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I. INTRODUCTION 

A. Statement of the Problem 

A problem sometimes encountered in systems work is that 

of making an optimum estimate of a signal s(t) when two or 

more Independent sources, each of which is corrupted by noise, 

are available. If it is assumed that nothing is known a 

priori about the signal and that the system used to estimate 

it is nonadaptive, then no matter what optimization scheme is 

used, it may not depend in any way on the nature of the signal 

s(t). 

As an example of this problem, suppose that we have 

available the two Independent sources or inputs s(t) + n^(t) 

and s(t) + ngft), where the noise functions n^(t) and n^ft) 

are assumed to be time-stationary random functions with known 

spectral density functions. Any linear, constant parameter 

system used to estimate s(t) from these inputs may be 

represented by the system shown in Figure 1. A simple way 

to avoid having s(t) appear in the optimization equations is 

to restrict ourselves to the class of systems which reproduce 

s(t) exactly in the absence of noise. For the simple system 

of Figure 1, this places the following constraint between 

and Yg: 

Ygfs) = 1 - Y^(s) (1.1) 

The expression for the output is then 

X = Y^(S + N^) + YgfS + Ng) 
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s(t) + n. (t) 

s(t) + no(t) 

Ylfs) Ylfs) 

+N +N 

Ygfs) Ygfs) 

->x(t) = •s(t) 

Figure 1. Linear system used to estimate s(t) 

s(t) + n^(t) 

s(t) + n.ft) 
Q 
4^ 

ngft) - n^(t) 

ïa(s) 

n. 

(a) 

s(t) + n^(t) 

+ 
-K) 

s(t)+e^(t) 
^ 

s(t) + n,(t) 
- /\ 

n^(t) - Hgft) n^(t) - Hgft) 
Yb(s) Yb(s) 

•n-, 

(b)  

Figure 2. The two "intuitive" systems for estimating 
s(t) 
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= S + [N^Y^ + Ngfl - Y^)] (1.2) 

With the error defined as the difference between x(t) and s(t), 

it is observed that the quantity within the brackets of 1.2 

is the transform of the error and that the choice of Y^^ will 

not affect the signal portion of the output . Furthermore, in 

the complete absence of noise, the output is exactly equal to 

the signal, as desired. Thus, we do not have to accept signal 

distortion as a consequence of smoothing the noise. For this 

reason we might refer to this as "distortionless" filtering^. 

An alternate, and perhaps more intuitive, way of estima

ting s(t) from the same inputs is shown in Figure 2(a). 

Letting E^(s) represent the Laplace transform of the error 

associated with estimating s(t) for this system, the 

expression for is given by 

Ea = - [(Ng - N,)Y^ - Ng] 

= + Ngd - Y^) (1.3) 

And, the over-all transfer functions between input line 1 and 

the output and between input line 2 and the output are given 

by Y^"(s) and 1 - Y„(s), respectively. Comparing Equations 1.3 

and the error terms of 1.2, we see that merely specifying 

the same optimization criterion for the two systems involved 

will insure that Y^(s) = Y^(s). This in turn implies that 

the systems of Figure 1 and Figure 2(a) are equivalent, even 

^See for example Chapter 15 of Brown and Nilsson (5). 
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though they may differ In their physical configuration. 

Still another method of estimating s(t) is shown in 

Figure 2(b). The expression for E^fs) is given by 

- "il 

• Eb = + Ngït (1.4) 

The overall transfer functions between lines 1 and 2 and the 

output are given by 1 - Y^(s) and Y^(s), respectively. 

Using the same optimization criterion as before, it can be 

shown that Y^(s) = Ygfs). Consequently, this system is 

equivalent to both the system of Figure 1 and the system of 

Figure 2(a). 

In particular, if minimization of the mean-square error 

is chosen as the optimization criterion, Y^(s) is the Wiener 

filter associated with estimating ng(t) from the input 

n2(t) - n^(t). Similarly, Y^(s) is the Wiener filter 

associated with estimating n^(t) from the input n^(t) -

n2(t). The two systems of Figure 2 may then be thought of as 

reducing the original problem, which involved an unspecified 

signal in both the inputs and the output, to the more 

familiar Wiener filter problem. 

The purpose of this thesis can be described, approximately, 

as the extension of the above concepts to higher dimension. 

To formalize the statement of the problem, consider the 

problem of estimating the signals 8^(t),...,8^(t) from the 

n available input lines shown in Figure 3. We will make the 
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f^(t) = a^^(t)s^(t) + ... + a^jjj(t)s^(t) + n^ft) 
> 

+ n^(t) 

f„(t) = + ., 

1 
+
 

Figure 3. The available input lines 

assumption that nothing is known about 

signals s^(t),...,8^(t) and that n^(t),...,n^(t) are 

nonstationary, random noise inputs with known autocorrelation 

functions. The noises are assumed mutually independent. 

It is also assumed that a^j(t) for i = 1, 2,...,n and J = 1, 

2,...,m are known functions of time and that n > m. 

Any system that might be used to estimate the signals 

s^(t),...,s^(t) may be represented by the n input, m output 

"black box" of Figure 4. In this thesis the filter shown is 

constrained to be linear, physically realizable , and 

distortionless and is allowed to operate on only a finite 

amount of past data. By physically realizable we mean 

simply that it is not allowed to operate on any future data 

in making the estimates for time t. The distortionless 

constraint requires that the system reproduce s^(t),..., 

Sjjj(t) exactly in the event that all the noises are identically 

^Causal is a more modern term for this. 
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Filter 

Si(t) 

fn(t) 

Figure 4. Block diagram of the general multiple-input, 
multiple-output filter for this problem 

f\(t) s^(t) 

) 

f„(t) 

Generalized 
(n-m)-dimensional 

Wiener 
filter 

Linear, 
algebraic 
operator 

Figure 5. Block diagram of the "intuitive" system 
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zero. The desired filter Is to be optimum In the sense 

that It minimizes each of the mean-square errors associated 

with estimating (ts^(t). Since the errors are In 

general nonstatlonary, the mean or averaging here Is to be 

taken In the ensemble sense. In particular the set of 

Integral equations for that part of the filter of Figure 4 

which satisfies the above requirements and estimates s^(t) 

is developed in Chapter III. The filter specified by these 

Integral equations shall hereafter be referred to as the 

"optimum" filter. If desired the integral equations for the 

filter which estimates Sj^(t) may be found from the above 

mentioned integral equations by an appropriate change of 

subscripts, but for the purposes of the discussion in this 

thesis it is sufficient to talk about that part of the filter 

which estimates s^(t). 

An alternate system for estimating s^(t) from the inputs 

shown In Figure 3 Is now suggested and is shown In block 

diagram form in Figure 5. This system employs a linear, 

algebraic operator having the n-m+1 outputs shown in 
n 

Figure 5, where Nj_(t) = E c. .(t)n.(t) for 1 = 0,l,...,n-m, 
J=1 

and each c^j(t) is a known function of time. The filter 

part of the system has as Its n-m Inputs the nonstatlonary, 

random noises N^(t),...,N^_^(t) and is assumed to make a 

minimum mean-square estimate of N^ft). Thus the filter is 

a generalized (n-m)-dlmenslonal Wiener filter (see the next 
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section for what is meant by this term). This system shall 

be referred to as the "intuitive" system. 

The objective of the thesis is to show that under suitable 

assumptions on the A matrix, where A = 1 = l,...,n, 

j = l,...,m, the "intuitive" system Is an optimum system for 

estimating s^(t). The assumptions on A amount to certain 

conditions of linear independence on the rows of A and are 

discussed later. 

It is usually possible to choose the linear, algebraic 

operator shown in Figure 5 in quite a number of different ways, 

with the number of ways depending on the A matrix. To each 

choice of the linear, algebraic operator there corresponds a 

generalized (n-m)-dimensional Wiener filter. Since each of 

these choices constitutes a different system, we see that 

there are usually quite a number of possible "intuitive" 

systems. If we can show that each of these represents an 

optimum solution to the original problem, then it will follow 

that all these "intuitive" systems have the same mean-square 

error. Or, in other words, all the "intuitive" systems are 

equally good. This is an important result in its own right 

and, as a matter of fact, is what motivated this thesis. 

It is interesting to point out at this time that for 

continuous operating systems the "intuitive" system does not 

offer any real advantage over the "optimum" system. That 

is, the set of integral equations that we get for the former 
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are just as difficult to solve as the set we get for the 

latter. The real advantage of the "intuitive" system is that 

it lends itself to the discrete analog, of the multidimensional, 

generalized Wiener filter, namely the Kalman filter, whereas 

the problem in its original form does not lend itself to 

this technique. This, of course, assumes that the noises are 

such that they can be generated by the use of shaping filters 

with white-noise inputs. The Kalman filter is devised speci

fically for a digital computer solution and has the advantage 

of handling a multiple-input problem almost as simply as a 

single-input problem, the only complexity added being the 

size of the matrices involved. This technique is discussed 

in Chapter 7 where a fairly general example with 2 signals 

and 3 input lines is treated. 

B. Review of Literature 

Quite a number of books and articles have been written 

on random processes in the years since World War II. The 

basic filter of the type that is of interest here was first 

developed by Wiener in 1942 and published in a classified 

report to Section D^, National Defense Research Committee. 

It was later released for general use and published in a 

book entitled "Extrapolation, Interpolation and Smoothing of 

Stationary Time Series" by Norbert Wiener (9). In this book, 

Wiener treated only the case of time stationary Inputs and 

considered constant parameter, linear, infinite operating 
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time filters. 

The basic type of filter considered by Wiener was later 

generalized in varying degrees by several authors as to the 

type of input(s) allowed and the constraints imposed on the 

filter. A convenient table of these generalizations is 

presented on page 150 of Bendat (3). Of primary interest here 

is the most general of these, namely the time varying para

meter, linear, finite operating time filter with nonstationary 

random noise inputs. This case was first treated by Dolph 

and Woodbury (6), br.t was also considered by Zadeh (11 ) and 

Bendat (2). It is interesting to note that there is not 

any great difference in developing the integral equations for 

the various cases, but that each new generalization brought 

with it certain inherent difficulties in solving these 

equations. This was the primary reason for treating the 

various cases separately. For the purposes of this thesis, 

all of the above types of systems are referred to as "gener

alized Wiener filters". 

Other than containing the basic theory in one form or 

another, most of the books and articles deal with topics 

that are of interest only to certain phases of the problem 

treated here and will be referred to throughout the thesis as 

the need arises. 
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II. A USEFUL RELATIONSHIP FOR AN n+1 BY n MATRIX 
Co 

In this chapter a relationship involving the deter

minants of certain n by n and n-1 by n-1 submatrices of an 

n+1 by n matrix will be stated in the form of a theorem and 

proven. This relationship will be very useful later in 

reducing the form of the integral equations specifying the 

filter for the "intuitive" system. Before proceeding to this 

theorem, it is convenient to introduce some notation which 

will be used throughout the remainder of this thesis. 

A. Notation 

Following the usual matrix notation, an upper case 

letter will be used to represent a matrix (not necessarily 

square) and the corresponding small letter with two subscripts 

will denote one of its entries. Thus, a^j is the entry in 

the 1^^ row and column of the matrix A. 

The determinant of the m by m matrix formed by,selecting 

rows l2.'***^^m columns matrix A will be 

denoted by 

Jl/"'''jm 
A 

where 1^ < Ig < ... < 1^ and < jg < ••• < When the 

Integers consecutive with 1 < k < m it will 

be convenient to use the notation 
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j T * • • « J J m 
A 

±1,.."'im'^m+l 

exc. 1 
k 

to denote the determinant of the matrix made up of rows i^,..., 

^k-1^ ik+l'-'-'^m' ^m+1 columns of A. This 

notation will be extended to indicate that two or more rows 

are left out or to indicate that one or more columns are 

left out from a selection of consecutive rows or columns 

of A," respectively. 

B. Theorems 1 and 2 

Theorem 1. Let B be an n+1 by n matrix where n > 2 and p, i, 

and q be integers such that l<p<i<q< n+1. Then, 

2 ,  .  .  .  ,n 
B 
1 , , n + 1  
exc. i,q 

1 , . a ., n 
B 
1, . ..,n+1 
exc. p 

2, ...,n 
B 
Ij...,n+1 
exc. p,i 

1 , . a a , n 
B 
1,...,n+l 
exc. q 

2,...,n 
B 
1 , . a , n + 1  

exc. p,q 

1 J . a a , n 
B 
l,aaa,n+1 
exc. i 

= 0 

( 2 . 1 )  

Proof: Define the matrix D in terms of the matrix B as 

follows : 

row 1 of D = row p of B 

rows 2,...,p of D = rows l,...,p-l of B, respectively 

rows p+l,...,q-l of D = rows p+l,...,q-l of B, respectively 

rows q,...,n of D = rows q+l,...,n+l of B, respectively 

row n+1 of D = row q of B 
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In terms of matrix D, Equation 2.1 is true if 

2 ̂ ^ n 
D 
14... ̂ n 
exc. i 

2, ...,n 
) 

2,...,n 
D 

1 f f n 
) 
2,...,n+l 

1J.. • J n 
D 
1,...,n+l 
exc. i 

4" 
2, ...,n 
D 

2 . ,  . . .  f  n+1 
exc. i 

1J ... ̂ n 
) 
1 f f n 

= 0 (2 .2 )  

Consequently, to prove 2.1 it is sufficient to prove statement 

2.2. Expanding the determinants of the three n by n matrices 

of 2.2 about column 1 yields 

2, ...,n 

1. . 
exc 

+ 
2,. 
D 

2 , .  
exc 

2,. 
) 
2,. 
D 

.,n 

rn+1 . 
] S (-l)Jd 
Lj=2 J1 

D 
2, .. • J n 
) 

2 , . . . , n+1 
exc. j 

. , n  

. ,n+l 
i 

T z (-i)j+:'d 
Lj=l J1 

• n 

,n LJ=1 J1 

n+1 . 
+ S (-l)Jd 
j=i+l jl 

2,..., n 
D 

1 , . . . , n + 1  
exc. i,j 

2,...,n 
) 
1, • .., n 
exc. j 

2,...,n 
) 
1,...,n+l 
exc. i,j 

= 0 

D 

(2 .3 )  

By simply collecting the coefficients of dj^ such that the 

left-hand side of 2.3 is written as 

n+1 
S (coefficient of d)d 
J=1 Jl' jl 

it is found that the coefficients of d^^, ̂ n+1 1 

zero. This completes the proof of Theorem 1 for n = 2. 

For n > 3, j included in the set of integers (2,...,n) and 
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j ̂  i, the coefficient of dj^ Is given by the left-hand side 

of 2.4 below. Therefore, statement 2.3 Is an equality If 

2,...,n 2,...,n 2, . .. ,n 2, . .., n 
D • D - D . D 

2 , . . . , n+1 1,.. .,n 2 , . . . , n+1 1, ..., n 
exc. 1 exc. j exc. j 

2,...,n 2, . . . ,n 
D • D = 0 
2, . . . ,n 1, ...,n+1 

exc. 1 

(2.4) 

exc. j,i 

where the minus sign Is used If j < 1 and the plus sign Is 

used if j > 1. If statement 2.4 with the minus sign assumed 

can be shown to be an equality for j < i, it will follow that 

2.4 with the plus sign assumed is an equality for 1 < j by 

simply interchanging 1 and j. Since column 1 of D does not 

appear at all in 2.4, it is convenient to define a new n+1 

by n-1 matrix A to be matrix D with column 1 deleted and to 

state and prove the following theorem for matrix A. Note 

that the proof of Theorem 2 will imply that 2.4 is an equality, 

which in turn will complete the proof of Theorem 1. 

Theorem 2. Let A be an n+1 by n-1 matrix (n > 3) and p and q 

be integers such that 2 < q < p < n. Then 

1,...,n-1 
A 
2,...,n+1 
exc. p 

1,...,n-1 
A 
2, . .. ,n 

1,...,n-1 
A 
1, . . ., n 
exc. q 

1,...,n-1 
I 
1,...,n+1 
exc. q,p 

1, ...,n-1 
A 

2 , . . . , n+1 
exc. q 

1, . .., n-1 
A 

exc. p 

= 0 (2.5) 

Proof: The proof of Theorem 2 is accomplished by 

mathematical induction by first proving that 2.5 is an 
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equality for n = 3 and n = 4, then expanding 2.5 "by the 

Laplace expansion for n > 5, and finally showing that 2.5 is 

true for n if it is true for n-2. 

(l) Statement 2.5 can easily be shown to be true for 

n = 3 by direct expansion. Notice that p and q must be 

chosen as q = 2, p = 3. In the interest of brevity, the 

expansion is not shown here. But the conclusion is that for 

any 4 by 2 matrix A, 

1,2 1,2 1,2 1,2 1,2 1,2 
A • A - A • A - A . A 
2,4 1,3 3,4 1,2 2 ,3  1,4 

= 0 ( 2 . 6 )  

(2) For n = 4, we can again prove statement 2.5 by 

direct expansion. We choose to expand each determinant of 

the 3 by 3 matrices In 2.5 along the 1^^ row, where 1 ̂  1, 

q, p, 5. For example, if we choose q = 2 and p = 4, then 

1=3, and the left-hand side of 2.5 becomes 

(a 
31 

2,3 1,3 
A 
2,5 -^•32 

+a 
33 

(a3i 
2,3 1,3 

(a3i ̂ 5 •^•32 ^4,5 

(831 
2,3 1,3 

(831 A 
2,4 -*32 

A 
2,4 

+a 

+a 

33 

33 

1,2 
)(a3i 

2,3 
A 
2,5 

)(a3i A 
1,4 

CM 1—1 

) (agi 
2,3 

^5 ) (agi 

OJ 1—
! <
 

a1,2 

2,4 
) (a^i 

2,3 
A 
1,5 

-a. 

— 3, 

"SL 

32 

32 

1.3 
A 
1.4 

1,3 

^1,2 

+a 
33 

1,2 
A 

+a 

1,31 
A +a 
1,51 

33 

33 

A 

After multiplying and collecting terms, the coefficients 

2 2 2 
of a^^, a^g, and a^^ are all of the form of 2.6 and are 

therefore zero. The coefficient of is 

1,4 

1,2 

1,2 

(2.7) 
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2,3 
A 

2 ,5  
• 

1.3 
A 
1.4 

-

2.3 
A 
1.4 

• 

1,3 
A 
2,5 

+ 
2,3 
A 
4,5 

1 
• A 

1 1,2 

2,3 
A 
1,2 

• 

1,3 
A 
4,5 

+ 
2.3 

A 
2.4 

• 

1,3 
A 
1,5 

2,3 
A 
1,5 

1.3 
. A 

2.4 

Notice that row 3 of A does not appear in 2.8; therefore, it 

is convenient to define a 4 by 5 matrix E which is made up 

of rows 1, 2, 4, and 5 of A. In terms of matrix E, 2.8 can be 

written 

a,b c,d a,b c,d a,b c,d 
- E • E - E • E + E . E 

2,4 1,3 1,3 2,4 3,4 1,2 

a,b c,d a,b c,d a,b c, d 
+ E • E -f E • E + E . E CJ I—

I 

3,4 2,3 1,4 1,4 2,3 

where a = 2, b,d = 3, and c = 1. 

The coefficient of is given by the negative of the 

quantity in 2.9 with a,d = 2, b = 3, and c = 1 and the 

coefficient of is given by 2.9 with a,c = 1, b = 3, 

and d = 2. 

In all three of the above cases it is easy to show by : 

direct expansion that 2.9 is equal to zero. In fact, if it 

is assumed that a, b, c, and d must include all three 

integers 1, 2, and 3 among them, then the three cases above 

exhaust the possible selections for a, b, c, and d which make 

2.9 different. Therefore, under the above assumptions, the 

quantity in 2.9 is identically zero. This relationship among 

the determinants of certain 2 by 2 submatrices of any 4 by 3 



www.manaraa.com

17 

matrix will be useful again in the next section where we 

treat statement 2.5 for n > 5-

(3) For n > 5, the general procedure is to expand each 

of the determinants in 2.5 by the Laplace expansion. 

According to the Laplace expansion^, the determinant of any 

n by n square matrix A can be expanded along the m rows 

^1' • ' 

|A|= z(-l) 
w 

A 
Jl^ . ..JJm 

^1''""'^m 

A 
Jm+l''""'Jn 

where (l) s=i^+ ... + i^ + + ... + j m 

(2) w = the ( ) minors of the form 
\ ' ^m 

A •^1' • • 
il^ . . .ilm 

that can 

be formed by choosing all possible combinations of 

m columns from n columns 

(3) The indices in each of the four sets (i^,...,i^), 

(lm+l'''''ln)' ^-^m+l'* * *-"^'n^ 

are arranged in order of increasing magnitude. 

In order to simplify the notation of 2.5 somewhat, 

define an n + 1 by n - 1 matrix A' which is formed from A 

as follows: 

row 1 of A' = row 1 of A 

row 2 of A' = row q of A 

rows 3,..., q of A' = rows 2,...,q-l of A, respectively 

^See for example Ayres (l, p. 33). 



www.manaraa.com

18 

rows q+l,...,p-l of A'=rows q+l, . . . , p -l of A, respectively 

row p,...,n-l of A' = rows p+l,...,n of A, respectively 

row n of A' = row p of A 

row n+1 of A' = row n+1 of A 

Then replace A' by A. In terms of this new matrix A, 

Equation 2.5 Is true If 

l,...,n-l 
A 
2,.,.,n-1fn+1 

1,...,n-l 
I 
2., . .. ,n 

1,...,n-l 
L 
lj3^ • • * J 

l,...,n-l 
A 

1J • • • J n*" 1 
A 
3,. ..,n+l 

1,3,..n-1,n+1 
= 0 

1,...,n-1 
A 
1,.•*,n—1 

( 2 . 1 0 )  

Thus, to prove statement 2.5, It Is sufficient to prove 

statement 2.10. 

Inspection of 2.10 shows that rows 3,...,n-1 are common 

to all of the matrices Involved. This suggests that each of 

the determinants In 2.10 be expanded about rows 3,...,n-1 by 

the Laplace expansion. For example, 
exc . J , J 2 

1, . .., n -1 
A 

2 , . . . , n-1,n+1 
=  z ( - i )  
w 

s 
A 

., n-1 i-\ J ÔQ 
A ^ 

. ,n-l 2, n+1 

where (l) 8=3+ ... + (n-l) + 1 + ... + (n-l) -

or s = 2 + (n+1) + + jg 

(2) w = the (^^g) minors that can be 

exc, JI,J 2 
^1,•..,n—1 

3,..", ri— 1 

formed by choosing all possible combinations of 

n-3 columns from n-1 columns. 
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Making a similar expansion for each of the other 

determinants, and at the same time writing each product of 

sums as a double summation, the left-hand side of 2.10 becomes 

Z Z (-1) 

*1*2 

A 

- Z Z 

*1*2 

A 

8c + 8f 
- Z Z (-1) 5 

*1*2 

A 

exc 
* 

exc. 
^1 •* ^2 

1, . 

3,. 

,.,n-1 

. ,n-l 
• 

1,.. 
A 
3,.. 

., n-1 

., n-1 
• 

J T J J p 
A 1 ^ 
2, n+l 

• 

k-i J kp 

l,n 

exc J , Jg exc. ki,kg 

1,. 

3,. 

. ,n-l 

. ,n-l 
• 

1,,. 
A 
3,.. 

., n-1 

., n-1 

J n , J P 
A i ^ 

n,n+l 1,2 

exc J , J g exc. 
^1 ' ̂ 2 

1, . 

3,. 

. ,n-l 

., n-1 
• 

1,.. 
A 
3,.. 

. ,n-l 

., n-1 
• 

J i f J p  
A 
2,n 

• 

l,n+l 

where (l) s^ + s^ = 2 + (n+l) + + jg + 1 + n + k^ + k^ 

= 2 n + 4 + J ^  +  jg  ̂  +  kg 

8^ + s^ = n + (n+l) + + jg + 1 + 2 + k^ + kg 

= 2n + 4 + + jg + k^ 4- kr 

s^ + s^ = 2 + n + + jg + 1 + (n+l) + k^ + kg + Sf = 2 

= 2n + 4 + + jg + k^ + kg 

(2) w^ and Wg are defined the same as w was defined 

above. 

Factoring out the quantities that are common to all three 

double summations this can be written 

Z Z (-1) 

^1*2 

exc. ji,jg 

1 , n - 1  

Jg 

2, n+l 
A 

l,n 
•A 

3 s » • ' J ri" 1 

Ji^ Jg 

n,n+l 

^I'kg 

1,2 
A 

exc. k^,kg 

1, ...,n-1 
I 
3) i ' » fD"1 

Jl^ J2 

2,n 

(2.11) 

A^1'^2 

l,n+l 
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Note that w (and consequently and Wg) can also be 

exc. 

1 ̂ # # # ^ ri"" 1 
A that can 
3 J • • • > ri"* 1 

thought of as being the (^0^) minors 

be formed by selecting all possible combinations of two 

columns, namely and jg, to be excluded from n-1 columns, 

and In fact. It is more convenient to think of w in this way. 

With this in mind, let us take a closer look at the terms in 

2 .11 .  

Some of the terms in the double summation have the pair 

equal to the pair (k^,k2). For each of these terms 

the quantity within the braces in 2.11 involves only four rows 

and two columns, namely rows 1, 2, n, and n+1 and columns 

and jg. Comparison with Equation 2.6 shows that the quantity 

within the braces in 2.11 Is zero for each term of this type. 

For the terms remaining in 2.11, the pair is not 

equal to the pair (k^jkg) which means that all of these terms 

fall into one of two categories. For one of these categories, 

call it v^, the set (will contain exactly three 

different integers; the other category, call it Vg, will have 

exactly four different integers in the set ( ^2 ̂ * 

Furthermore the double summation of 2.11 can be replaced by a 

single summation by noting that the quantity outside the braces 

in 2.11 is the same for ~ (a,b) and (k^,k2) = (c,d) 

as it is for = (c,d) and (k^,k2) = (a,b) and choosing 

the new summation properly. In view of the above, the terms 
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remaining in 2.11 can "be represented by 

(-1) 
Vi+Vg 

Jifjp 
A ^ 
2,n+l 

exc. j^yjg exc. 

1f ...fn-1 1 ^ ^  n — 1  
I 
3 ̂ * * * t 1 

A 

+ A 
k^fkg 

2,n+l 

where (1) 

I ^ ^ 
l,n 

Jifjp 
I ^ 

l,n 

= the 

minors 

jifjp 

n,n+l 

kn ,kp 

n,n+l 

A 
1,2 

3, • • •,n— 1 

J1, J' 

2,n I l,n+l 

1,2 
A A 

kl'kg 

2,n 
A 
1^1, J 21 

1 ) n+lj 

(R^l ) j- (n-3) ( 2 ) +2 (n-3 ) 1 

21 
exc. Jifjg 
1,...,n-1 
L 
3,"*", 1 

(2 .12 )  

products of the 

exc. k^fkg 
1, ... ,n-l 

that can be 
3,...)1 

formed by choosing two groups of 2 columns each 

from n-1 columns, the order of the groups being 

indistinguishable- and either k^ = ( or jg) or 

kg = (j-, or jp), but not both 

(2) Vg = the 2 products of the minors 

exc . J , J2 

1, ,,.,n-l 
I 
3 , . . . , 1  

exc. k^^kg 

1,...,n-1 
A that can be formed by 
3,"*», ri— 1 

choosing two groups of 2 columns each from n-1 

columns, the order of the groups being indis

tinguishable and j^, jg, k^, and k2 being 4 

distinct integers. 
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For each term that falls into category the quantity 

within the braces in 2.12 involves the determinants of 

certain 2 by 2 submatrices of a 4 by 3 matrix. By making a 

suitable association between the matrix E of 2.9 and the 

rows and columns of A that are present in the quantity within 

the braces of 2.12, it is possible to conclude from 2.9 and 

the discussion which follows it that the quantity within the 

braces of 2.12 is identically zero for this case. Thus the 

summation over v^ contributes nothing, and 2.12 can be 

written as just the summation over Vg. 

It is convenient at this point to symbolize the quantity 

within the braces in 2.12 by 

[(^2^ ^l'' ^2^^ 

to save some writing. Then 2.12 can be written as 

exc. exc. k^,kg 

s(-i) 
z 

Jl+j2"^^l'^^2 
A 
1, ...,n—1 

3f ••«^n—1 
A 
1, .. .,n-1 

3f***;h~ 1 j2^ ^1' ̂ 2^^ 

exc exc. J 2' ̂2 
., n-1 1,.. ., n-1 

+ . ,n-l ^3,.. ., n-1 

exc exc. 

1. . ., n-1 1,.. . ,n-l 
+ . ,n-l 

• Ag 
Û, . . 

1—
1 

1 c 

{(j^f j J2'' .^2^^ 

[(Jl, kg; jg, k^)]^ (2.13) 

where z = the possible combinations of 4 different 

columns, call them columns j^, jg, k^, and kg, from n-1 

columns. 
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If It is assumed that < jg < < kg, as is now 

perfectly permissible, than it can be shown by direct expansion 

that 

^l'' ^2^ ~ ~ Jgi ^1' ̂ 2)} 

^2' 2' ^1 ̂ ^ ~ ̂  J2) , kg)} 

Substituting 2.14 into 2.13 the latter can be written as 

Ig exc. k^,kg 

(2.14) 

z ( - i )  
z 

{(j^^ j 2 ̂ '^2^^ 

exc. j^,k^ 

1,...,n-l 
I 
3 , n ™ 1  

exc. J]_ ̂  J 

1,.. ., n-1 
A 
3,.. ., n-1 

exc. j 
l'^2 

1,..., n*~ 1 
A 

1, .,,,n-1 
A 
3 , n — 1  

1, ...,n-1 
A 

3, •••,n-l 

exc. j g,k^ 

1, .,., n-1 

3 ,  " * « , 1  3,»» » ,  ri" 1  

(2.15) 

Let B be defined as the n-1 by n-3 matrix formed by 

taking the transpose of 
n-1 

, then interchanging 
3^ • • #,n" 1-

rows and 1 and rows kg and n-1. Since the determinant of 

the transpose of a matrix is equal to the determinant of the 

matrix itself, the quantity within the braces in 2,15 is equal 

to zero if 

1,...,m-l 1,.. ., m-1 1, ... ,m-l X J • • • ̂ ITl" X 
B • B - B • B 
2,...,m+l 1, .. ., m 2,...,m+l X ̂ • » • J TU 
exc. jg exc. k^ exc. k^ exc. jg 

1,..., m-1 
B 
2, . # *, m 

1,,.., m-1 
B 
1,...,m+l 
exc. jg,k^ 

(2 .16)  
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where n > 5, m = n-2 and 2 < jg < <m. 

Equation 2.16 is just the negative of Equation 2.5 with 

n replaced by m (m = n-2), q replaced by and p replaced 

by k^. It is also noted by the order of the above arguments 

that statement 2.5 is true if statement 2.16 is ture; that 

is. Equation 2.5 is true for n (n > 5) if it is true for n-2. 

Since 2.5 has already been proved for n = 3 and n = 4, the 

conclusion is reached by the principle of mathematical 

induction that 2.5 is true for all n > 3. This completes 

the proof of Theorem 2 which in turn completes the proof of 

Theorem 1. Theorem 1 is very useful in the work that 

follows. 
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III. THE OPTIMUM LINEAR DISTORTIONLESS FILTER 

A. Comments on Finite Operating Time Filters 

It is assumed that the reader has a basic understanding 

of the weighting function concept. However, since there are 

differences in notation among the various authors, a few 

comments about the notation used in this thesis and about 

finite operating time filters seem appropriate. 

Consider the simple system shown in Figure 6 with input 

x(t) w(t,v) y(t) 

Figure 6. System illustrating weighting function 

x(t), output y(t) and weighting function w(t,v). In this 

thesis the weighting function w(t,v) is defined as the output 

of the system shown in Figure 6 at time t due to a unit 

impulse applied at the input (with the switch closed, of 

course) at time t-v. The variable t is usually called the 

"running time variable" and v the "age variable". 

If the system of Figure 6 possesses zero initial 

conditions and the switch is closed at t = 0, the output 

at time t can be written as 

t 
y(t) = ^ w(t,v)x(t-v)dv (3.1) 

This system is a finite operating time filter since it weights 

only a finite amount of the past input. However, note that 

the interval over which the input is weighted increases as 
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time goes on. 

An alternate finite operating time filter is one in which 

the interval over which the input is weighted has a constant 

length T. In this case it is still convenient to think of 

the switch being closed at t = 0 and, providing t > T, the 

output at time t is given by 

T 
y(t) = ̂  w(t,v)x(t-v)dv (3.2) 

The corresponding equation for an infinite operating 

time filter can be obtained from 3.2 by simply letting . 

If x(t) and y(t) are known functions of time, then 3.1, 

3.2, and 3.3 are integral equations which specify their 

respective weighting functions. Notice that the problem of 

3.1 is truly nonstatlonary in character; that is, the 

weighting function depends intrinsically upon t and v and 

a different solution w(t,v) is required for each t considered. 

The situation is a little different In 3.2 where the 

weighting function depends not only on the variables t'and v 

but also on the parameter T.- With x(t) and y(t) given it is 

usually necessary to fix our attention on a specific value of 

time, say t = t^, to solve the integral equation. By making 

the change of variable t' = t - (t^-T), Equation 3.2 can be 

written as 
T 

y(t'+t^-T) = ^ w(t'+t^-T, v)x(t'+t2^-T-v)dv 

and specifying t = t^ in 3.2 corresponds to specifying t*= T 

in the above equation. Finally by defining 
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x^(t') = x(t'+t^-T) 

y^ft') = y(t'+t^-T) 

Wl(t',v) = w(t'+t^-T,v) 

Equation 3.2 evaluated at t = t^ becomes 

T 
yi(T) = ^ w^(T,v)x^(T-v)dv (3.3) 

Consequently it is perfectly general to replace Equation 3.2 

by Equation 3.3, but we should keep in mind that if we fix 

our attention on a different instant of time t we will in 

general get a different weighting function since x^ and y^ 

will in general be different. It is worth noting that since 

T is a constant in w^(T,v) above, T is more, properly thought 

of as a parameter rather than a variable as the notation 

indicates} however. Equation 3.3 is left as it is'because of 

its close relationship to 3.1. 

In summary, from the preceding discussion and comparison 

of Equations 3.3 and 3.1, we can conclude that the integral 

equation for the type of filter represented by 3.2 can be 

obtained from the integral Equation 3.1 by simply fixing our 

attention on a fixed time instant t and identifying t with T. 

Therefore, the integral equations in the following sections 

will be developed for systems of the type characterized by 

Equation 3.1. 
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B. Derivation of the Integral Equations 

In this section the integral equations are developed for 

the filter which optimizes the estimate of s, (t) from the 

•available input lines shown in Figure 3. The criterion for 

optimization is the minimum mean-square error criterion. 

As stated below Figure 4, the filter is constrained to be 

linear, physically realizable, and distortionless. In 

addition, it is allowed, in general, to operate on only a 

finite amount of past data. There is one further assumption 

which is Implicit in the development that follows, namely 

that the filter is not adaptive. In other words, the filter 

will not make use of the knowledge gained about s^(t) during 

the course of its operation to make a further improvement in 

itself. This is a subtle but important point and. more will 

be said of it later. 

Since the filter is constrained to be linear it may be 

represented by Figure 7 where f^(t) is the input signal on 

line i and w^(t,v) is the weighting function from line i to 

the output. Comparison of Figure 3 and Figure 7 shows that 

'fi(t) = a^^(t)s^(t) + ... + a^jn(t)Sj^(t) + n^(t) (3.4) 

The constraint of physical realizability implies that 

w^(t,v) =0 for V < 0 and each i = l,...,n. 

In view of the discussion in the proceeding section, the 

finite operating time filter is initially chosen to be the 

type discussed in connection with Equation 3.1 and can later 
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x(t) = s,(t) + e(t) 

f„(t) 

Wj(t,v) 

Figure 7. The general n-lnput, single output linear filter 



www.manaraa.com

30 

be extended to another type if the need arises. Then the 

output x(t) Is given by 

n t 
xft) = s r w.(t,v)f.(t-v)dv (3.5) 

1=1 0 

The distortionless constraint Is defined to mean that 

the output at time t is Identically s^(t) In the event that 

all of the noises are Identically zero. Using 3.5 together 

with 3.1 this constraint Implies that 

n t m 
G(t) s S f w.(t,v)[ S a. .(t-v)s .(t-v)]dv - s,(t) = 0 (3.6) 

1=1 0 1 J=1 J 

where G(t) Is defined as shov/n for later use. 

By Inspection of Figure 7 the error, e(t), associated 

with the estimate of s^(t) Is given by 

e(t) = x(t) - s^(t) 

Using Equation 3.5 for x(t), along with 3.4 and 3.6, the 

expression for the error reduces to 

n t 
e(t) = ^ w^(t,v)n^(t-v)dv 

Squaring this expression for the error, writing the product 

of the two summations as a double sum and the product of two 

Integrals as a double Integral, and finally taking the 

ensemble average gives 

n n t t 

J 

E(t)= e (t) = E S f f w. (t,u)w (t,v)n. (t-u)n. (t-v)dudv 
1=1 J=1 0 0 1 J 1 J 

where E(t) Is defined as the mean-square error for notatlonal 

convenience. Since the noises are assumed to be mutually 
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independent, 
pcp^(t-u,t-v) if i = J 

n.(t-u)n.(t-v; = J (3.7) 
^ Lo if i ^ j 

where ^^(t^jtg) is defined as the autocorrelation function of 

the nonstationary noise n^(t), i.e. 

ViCtl^tg) = IÇTt^Tn^TÇT (3.8) 

Utilizing 3.7 the expression for the mean-square error reduces 

to 
n t t 

E(t) = Z r r w. (t,u)w. (t,v)cp. (t-u,t-v)dudv (3.9) 
i=l ^0 0 1 ^ ^ 

The problem of finding the weighting functions w^(t,v), 

...,w^(t,v) which will minimize the mean-square error subject 

to the conditions imposed on the filter thus reduces to 

minimizing E(t) subject to the constraint that G(t) = 0. This 

type of problem can be handled readily by using the Lagrange 

multiplier technique. To employ this technique note that E(t) 

and G(t) are really functions of w^(t,v),...,w^(t,v); i.e., 

E(t) = E(w.,.. . ,w ) 
^ "  (3 .10)  

G(t) = G(w^,...,w^) 

Then according to the Lagrange multiplier technique^, in 

order that E attain an extreme value under the condition that 

G = 0 at a point (w*,...,w^), it is necessary that there be a 

number \ such that 

^See for example Pulks (7), pp. 266. 
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ôe(w^^ • • « f ) 

Bw. + X 
9G(w^,...,w^) 

ôwjl 
= 0 for 1 = 1,...,n 

...,w*=0 w*,..,,w*=0 

and G(w|,...,w*) = 0 (3.11) 

Following the usual procedure of calculus of variations, 

w^(t,v) is replaced by w*(t,v) + e^T^(t,v) for each i = l,...,n 

in Equation 3.11. Here, is an arbitrarily small parameter 

and T^(t,v) is an arbitrary perturbation for 0 < v < t. Then 

3.11 can be replaced by 

5E 
ôe^. 

+ X 5G 
ô g. 

f0 e-^, , e^-0 

=0 for i = l,...,n 

(3.12) 

and G(w*,...,w*) = 0 

where the arguments of E and G are left out to save writing. 

The equivalence of Equations 3.11 and 3.12 can be shown by 

expanding E and G in a Taylor series about the point (w*j j • • • i 

Substituting the expressions for E and G given by 3.9 

and 3.6, respectively, into the first of Equations 3.12, 

performing the indicated differentiation, and using the fact 

that ^^(ti/tg) = cpj_(t2,t^) yields 

t t 
.^Tij_(t,u) {2 ^ w*(t,v)cp^(t-u,t-v)dv 

m 
+ X Z a. .(t-u)s .(t-u)3 du 

j=l ̂  J 
0 

Since T^(t,u) is an arbitrary perturbation for 0 < u < t, the 

above equation can be satisfied only if the quantity within 
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the braces vanishes. Therefore, 

t m 
2 ̂  w*(t,v)cpjL(t-u,t-v)dv + X^E^a^j(t-u)sj(t-u) = 0 (3.13) 

for 0 < u < t and each 1 = l,...,n. 

The second of Equations 3.12 Is simply Equation 3.6 with . 

w^(t,v) replaced by w*(t,v). If the assumption is made that 

the weighting functions w*(t,v), 1 = l,...,n, do not depend 

on the signals Sj(t), j = l,...,m (i.e., the filter Is not 

adaptive), then this one equation Implies the m conditions 

given by 

n 6(v) for j = 1 

E &ij(t-v)w*(t,v) = j (3.14) 

10 for j = 2,...,m 

where 6(v) is the Dirac delta function. 

The set of n equations represented by 3.13 together with 

the set of m equations represented by 3.14 are the necessary 

conditions that w£(t,v),...,w*(t,v) must satisfy for the 

mean-square error to be a minimum. These conditions are also 

sufficient If 

> 0 for each 1 = l,...,n 
2 

The details of taking the second derivative indicated above 

are not shown here but the result is 

^2^ t t 
-— = 2 J^J^ni(u)^i(v)%^(t-u,t-v)dudv 

6-,,..., e —0 r 
= 2 ni(u)n^(t-u)du] > 0 
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for each i = which ensures that a minimum point has 

been achieved since the square is always positive. 

Equations 3.13 and 3.14 together make up a set of m+n 

equations in the n+1 inknowns w*(t,v),...,w^(t,v), and X 

which can be solved simultaneously for these unknowns. 

Indeed 3.14 represents a set of m-,equations in n unknowns and 

can be written in matrix notation as 

[A(t-v)] "w*(t,v)* . = 6(v) • 

w*(t,v) 0 

w*(t,v) 6 

(3.15) 

where A(t) is the n by m coefficient matrix with elements 

a^j(t), and [A(t)]^ is the transpose of A(t). Consequently, 

Equation 3.15 may be used to solve for m of the optimum 

weighting functions in terms of the other n-m weighting 

functions whenever A(t-v) has m rows such that the deter

minant of the m by m submatrlx consisting of these m rows 

is nonzero for all values of v in the Interval (O < v < t) 

and all values of t of Interest. Let us assume that A 

possesses m such rows and furthermore that these are rows 

1,...,m; that is, 

^ 0 for all .V such that 0 < v < t (3.16) 
1,. .., m 
A (t-v) 
1,.. •, m 

Under this assumption, it is possible to solve for w£(t,v), 

..., w*(t,v) in terms of w*^^(t,v),...,w*(t,v). From either 
m' 
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3.14 or 3.15, one can write 

t 
r l,...,in 
A (t-v) w*(t,v) 

w*(t,v) 

w*(t,v) 

- i: a .p(t-v)w*(t,v) 
j=m+l ^ 

n 
- S a (t-v)w*(t,v) 
j=m+l J 

Using Cramers Rule, the fact that the determinant of a matrix 

transposed is equal to the determinant of the matrix itself, 

and finally that 

n 
6(v)- s a (t-v)w*(t,v) 

J=m+1 ^ 

n 

m y. 
S (-1) a 

lc=l Jk 

exc. k 
1, * # •, m 
A (t-v) 
1 f # * •, m 
exc. i 

= (-1) m 
1, ... ,m 
A (t-v) 
1,.. •, m, J 
exc. i 

(3.17) 

for j included in the set of integers (m+l,...,n), the expres

sion for w£(t,v) reduces to 

1 
=- 1, --.,m 

A (t-v) 

- s 

1, .. •, m 

n 
e 

j=m+l 

2, . .  . ,m 
A (t-v) 
1, ..., m 
exc. i 

1, •.., m 
A (t-v) 
1,...,m,j 
exc. i 

wj(t,v)} (3.18) 

for i = 1,,.,,m. 

The set of n equations represented by 3.13 can be 

written in matrix notation as 
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1—
1 0
 1 

•
p I 

1 s^(t-u)' '-2 

s„(t-u) -2 -2 ̂  w*(t,v)cp^(t-u,t-v)dv 

which can be thought of as a set of n equations in the m 

unknown xs^,...,Xs^. Because of the assumption 3.16, the 

first m of the above equations can be used to solve for Xs^, 

.,.,X8^ by using Cramer's Rule. The result is 

m 

A (t-u) 
1J • • • ̂in 

f s {-2)(-l) 
k=l 

i+k 

exc. i 
1, • • #, m 
A (t-u) 
1, # • #, m 
exc. k 

(3.19) ^ w*(t,v)cpj^(t-u,t-v)dv} 

for i = l,...,m and 0 < u < t. 

Equation 3.19 can now be substituted into the remaining 

n-m ..equations of 3.13. If Equation 3.18 is then used to 

eliminate w*(t,v),...,w*(t,v), the result is 

t 
^ w*(t,v)cp^(t-u,t-v)dv 

+ 1J • • • ̂ m 
A (t-u) 
1, . • ., m 

exc. j 
l,.«.,m 
A (t-u) 
If.#.,m 
exc .k 

- s 
p=m+l 

I j  •  • • .  
A (t-v) 
1,. #., m 

m m j+k+1 
C S a .(t-u)C E (-1) 
j=l k=l 

0 

2,,..,m 
A (t-v) 
1* ̂  0 » » J in 
exc. k 

6(v) 

l,...,m 
A (t-v) 
1 f f lîif P 
exc. k 

w*(t,v)]cpj^(t-u,t-v)]dv}} 
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for 0 < u < t and each 1 = m+1,...,n. The Integration which 

includes 6(v) may then be carried out using the sifting 

property of the Dirac delta function. Then by using Equation 

3.17 and freely interchanging the order of integration and 

summation the above equation can be put in the form 
t 
^ w*(t,v)cp^(t-u,t-v)dv 

n t 
+ S r w*(t,v) 
j=m+l 0 1J • 0 • J m 

A (t-u) 
X J # # * ̂  m 

X ̂ • • • J m 
A (t-v) 
1J . • » ^ m 

m 
C S 
k=l 

l,...,m 
A (t-u) 
Ij...^m^i 
exc. k 

1 ̂ ... J m 
A (t-v) 
Ij"..;m^j 
exc. k 

cpj^(t-u,t-v) 3dv 

+ (-1)* S 
k=l 

m 

1—I 
<
 

. ,m 
(t-u) 

2,.. 
A 

. ,m 
I—I 

. ,m,i 1,.. 
exc. k exc. k 

•
 

I—1 
<
 

. ,m 
(t-u) A " * 

. ,m 

1,.. . ,m 

1—1 

. ,m 

(t) 

(t) 

cp^(t-u,t) = 0 

( 3 . 2 0 )  

for 0 < u < t and each i = m+l,...,n. Notice that 3.20 is 

a set of n-m equations which together determine w*^^(t,v),..., 

w*(t,v). Once this set of equations is solved, the remaining 

m weighting functions are given by 3.18. This completes the 

derivation of the integral equations for the "optimum" 

filter. 
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IV. THE INTUITIVE FILTER 

The purpose of this chapter is to investigate the 

"intuitive" system. A form of the "linear, algebraic operator" 

referred to in the introduction will be constructed which will 

be fairly general yet specific enough to be handled without 

great notational difficulty. The integral equations for the 

generalized (n-m)-dimensional Wiener filter associated with 

this linear, algebraic operator will then be given. But 

before proceeding to this problem, it is convenient to develop 

the integral equations for the generalized r-dimensional 

Wiener filter for the type of input that will be of interest 

here. 

Consider the problem of finding the weighting functions 

y^(t,v),...,y^(t,v) which will minimize the mean-square error 

associated with estimating N^ft) in Figure 8. The weight

ing functions are assumed to be physically realizable and the 

system is "turned on" at time t = 0 with zero initial condi

tions. The nonstationary,. random input noises n^(t), i = 1, 

.,.,n, are mutually independent with known autocorrelation 

functions; that is. 

A. Generalized r-Dimensional Wiener Filter 

(4.1) 

for i f j 
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Figure 8. The "generalized r-dimenslonal Wiener filter" 
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It is also assumed that the r available input lines are of the 

form shown in Figure 8 where 

n 
N ^ ( t )  =  ^ I ^ c ^ j ( t ) n j ( t )  ( 4 . 2 )  

and is a known function of time (possibly zero) for 

each 1=0, l,...,r and j = 

With the above given information and the error e(t) 

d e f ined as the difference between the output and N^ft), the 

error can be written as 

r t 
e ( t )  =  ^  y j _ ( t , v ) [ N Q ( t - v )  -  N j _ ( t - v ) ] d v  -  N o ( t )  

After squaring the expression for e(t), substituting 4 . 2 ,  a n d  

employing 4.1 when the mean is taken, the expression for 

e^(t) can be reduced to 

r r t t 
e  ( t )  =  \  ̂ { 5  y i ( t , u ) y j ( t , v )  •  

n 

±' L 11 
^1 Ook(t)[cok(t-u) - c^j^(t-u)]cpj^(t,t-u)}du 

-  O i k ( t - u )  ] [ C o k ( t - v )  -  C j ^ ( t - v ) ] c p j ^ ( t - u , t - v )  } d u d v  

r t n 
- 2  

i 
Hp 

+  2  C q,  ( t ) c p ,  ( t , t )  
k=l ^ 

To find the set of weighting functions which minimizes 

e ^ ( t ) ,  t h e  u s u a l  c a l c u l u s  o f  v a r i a t i o n s  i s  u s e d .  T h a t  i s ,  

y^(t,v) + e^nj_(t,v) is substituted for y^(t,v) where rtj_ is 

an arbitrary function for v in the interval 0 < v < t, and 

y^(t,v) is understood to be the optimum weighting function 
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from here on. A necessary condition for a minimum to occur 

at the point that 

9e^(t) = 0 for each i = l,...,r 
^ = 0 

That a minimum indeed occurs can be shown by calculating the 

second derivative and showing that 

5^e^(t) > 0 for each 1 = l,...,r 

— 0 

The details of the above calculations are not shown here 

but the result is that the optimum weighting functions are 

specified by the set of r integral equations 

r t n 
2 r yi(t,v) C S TCq,  ( t - u )  -  c  ( t - u ) ] .  

j=l 0 ^ k=l 

[°Ok(t-v) - Cjit(t-v)]cpj^(t-u,t-v)}dv 

n 
- S ÔQk(t)[Ook(t-u) - c j^(t-u)]cpj^(t,t-u) = 0 (4.3) 

k=l 

for 0 < u < t and each q = 1,...,r. This set of Integral 

equations is, of course, just a specialization of the 

generalized r-dlmenslonal Wiener filter to the type of Inputs 

and desired output shown in Figure 8. 

B. The Linear, Algebraic Operator 

As mentioned in the Introduction there are usually 

quite a number of possible ways to construct the linear, 

algebraic operator shown in Figure 5. For example, with 

appropriate assumptions about the linear Independence of the 
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rows of the A matrix, there are 3 possible ways of choosing 

the linear, algebraic operator for m = 2 and n = 3, 6 possible 

ways for m = 3 and n = 4, and l6 possible ways for m = 2 and 

n = 4. The number of possible ways of choosing the linear, 

algebraic operator grows at a rather fantastic rate as m and 

n become larger. 

Since it is not feasible to treat all the possible ways 

of constructing the general linear, algebraic operator shown 

in Figure 5^ a different approach is chosen here. The approach 

here is to choose a form that is fairly general, yet specific 

enough so that the notation does not become too cumbersome and 

for which only a few assumptions need be made about the A 

m a t r i x .  T h e n  t h e  g e n e r a l i z e d  ( n - m ) - d i m e n s i o n a l  W i e n e r  f i l t e r  

which corresponds to this linear, algebraic operator is 

specified and if this system can be shown to be optimum, it 

will follow that whenever A permits another system of similar 

form to be constructed, it too will be optimum. 

The form of the linear, algebraic operator chosen here is 

the portion of Figure 9 included inside the dotted box, where 

r = n-m. The notation 

Oj(fl, • • .,fm,fm+j) 

e x c .  f „  

is used to denote a linear, algebraic operator (or sub-

operator) haying inputs f^(t),...,f^ f^ _j_^(t),..., 
! J j 

f ^ ( t ) ,  f ^ ^ j ,  w h e r e  p y  i s  i n c l u d e d  i n  t h e  s e t  o f  i n t e g e r s  
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r 

Oo(fi,f 2 ' • • ' ' ^ m )  

0]_(f. •''^m'^m+l) 
exc 

Oj(fi,. 
exc 

• s  

Or(fi^. 
exc 

Si+NQ 
> 

30 

+ 

Nq-NI 
y i ( t , v )  

No-Nj 

0 

yj(t,v)^([)-

No-Ny 
yp(t,v) 

Linear, algebraic operator j 

Figure 9 .  The "intuitive system" 
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( l , f o r  j  =  l , . . . , r .  T o  d e r i v e  t h e  s p e c i f i c  f o r m - o f  

Oj, first write the equations for input lines l,...,Pj-l, 

Pj+l,...,m, m+j in matrix notation as (see Figure 3 and 

Equation 3.4) 

l,,.«,m 
A (t) 
1^ # • t J T£[f m4" j 
exc. p 

'J 

Sn (t) 'fl(t) • -n^(t) -

"Pj-l(t) 

• 

V*) 

( 4 . 5 )  

Then for every value of time t for which the determinant of 

the matrix on the left is nonzero. Equation 4.5 may be solved 

for s^(t) using Cramer's Rule. The resulting linear combination 

of f^(t)'s will be defined as Oj(f2y...,f^,f^^j). Indeed, 

because of the similarity of the two column vectors on the 

right-hand side of 4.5, it is noted that 

Si(t) = Oj(fi, .. .,fj^,fm^j) - Oj(ni, .. .,njj^,n^_j.j) (4.6) 
exc, f exc. n_ 

'Ô 

And, Oj is found to be given by 

Oj(f^, .. .,f^,fjj^^j) = 

exc. f 
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A  ( t )  
1L J » 9 • f ni4"J 
e x c .  p  

p .-1 

C s (-1)1+1 
1=1 

2 ̂ *, * J m 
A  ( t )  

• # «^rri^in"f*J 
exc. i,Pj 

fi(t) 

m 
+ S 
i=Pj+l 

'j 

(-1)1 
2 ̂  # • • J m 

A  ( t )  
ni4"j 

e x c .  IjP 

fi(t) 

'J 

l)m+l 
2 , . .  

A 
. ,m 

1 , . .  . ,m 
e x c .  

(t) ( 4 . 7 )  

for j = l,.,.,r. Also, Oq Is given by 

A  ( t )  
1J #.. ̂ m 

m 
Z (-1) 

1=1 

1+1 2 ̂ ^in 
A  ( t )  
1 ̂ #. • J m 
e x c .  i  

fi(t) 

( 4 . 8 )  

And, of course, ^ given by 4.7 with f\(t) 

replaced by n^(t) for each j = l,...,r and by 4.8 for j = 0. 

It is also observed by comparing 4.6 with Figure 9 that 

Mgft) = *^0^^1^ * * *'^m^ 

and Nj(t) = Oj(n^,...,n^,nj^_^j) (4.9) 

e x c .  n  

for j = l,...,r. Thus the expressions for Ngft) and Nj(t) 

have been established and are given by 4.8 and 4.7, respec

tively, with f^(t) replaced by n^(t) In both equations. 

As a simple example, consider constructing a linear, 

a l g e b r a i c  o p e r a t o r  f o r  t h e  I n p u t s  s h o w n  i n  F i g u r e  1 0 ( a ) ,  

The quantities that can be measured are thë signal levels 
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+ Sg + n-j_ 

= Si + 282+ng 
-> 

^3 ~ 

( a )  T h e  a v a i l a b l e  i n p u t s  

Sn+Sn 

2n,-2n 

-1 

( b )  T h e  l i n e a r ,  a l g e b r a i c  o p e r a t o r  

Figure 10. Example illustrating the linear, algebraic 
operator 
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of the 3 Input lines, namely f^, fg, and fy and the 

question is how to "operate" on these measurements to get the 

desired outputs of the linear, algebraic operator. The 

method suggested is to initially treat the noises as if 

they, too, were known and write the input as a set of 3 

e q u a t i o n s  i n  t h e  t w o  u n k n o w n s  s ^  a n d  s ^ j  i . e . ,  

3i + Sg = - "l 

=1 + 2=2 = fg - "2 

+ sg = f2 - nj 

In particular, the first two of the above equations are 

linearly independent and may be solved for s^. This yields, 

®1 ^ 2(fi - n^) - (fg - ng) 

Upon rearranging this can be written 

2f^ - f2 = s^ + Zn^ - n^ 

Comparing this to Figure 9, it is observed that the left-hand 

s i d e  o f  t h i s  e q u a t i o n  d e f i n e s - t h e  o p e r a t o r  0 Q ( f ^ , f 2 ) .  

Similarly, the last two equations are linearly independent 

and may also be solved for s^ to yield the equation 

- fg + Sf^ = s^ - ng + 2n^ 

The left-hand side of this equation defines the operator 

0 ^ ( f ^ ,  f g ,  f g ) ,  w h e r e  p ^  =  1 .  T h e  c o m p l e t e  l i n e a r ,  a l g e b r a i c  

exc. p^ 

operator is shown in Figure 10(b). Note that in this example, 

p^ cannot be chosen as 2 since the first and third equations 
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of the above set are not linearly independent. Consequently, 

the number of possible linear, algebraic operators is reduced 

from 3 to 1, and the number of possible "intuitive" systems is 

reduced from 6 to 2. One of these "intuitive" systems 

consists of the linear, algebraic operator shown in Figure 

10(b) together with the Wiener filter which makes an optimal 

estimate of (2n^ - n^) from (2n^ - Sln^); the other 

"intuitive" system consists of the same linear, algebraic 

operator together with the Wiener filter which makes an 

o p t i m a l  e s t i m a t e  o f  ( 2 n g  -  n ^ )  f r o m  ( 2 n ^  -  2 n g ) .  

Before proceeding to the integral equations which 

describe the generalized r-dimensional Wiener filter 

associated with the linear, algebraic operator proposed here, 

it seems appropriate to discuss the limitations of the 

chosen operator. Prom a close inspection of Figure 9, it is 

noted that there are two reasons for the proposed operator 

not being completely general. These are: 

( 1 )  T h e r e  a r e  n - m  l i n e s ,  n a m e l y  l i n e s  m + l , . . . , n ,  

which are included in only one operator. This 

means that n^^^(t) is included in only in N^(t 

n m ^ p ( t )  i s  I n c l u d e d  o n l y  i n  N ^ ( t ) .  

(2) The fact that Ngft) appears as part of the input 

t o  e a c h  o f  t h e  w e i g h t i n g  f u n c t i o n s  y ] _ , . . . , y j , .  

In spite of being restricted in these two ways from the 

most general case, the linear algebraic operator proposed in 
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this section Is still fairly general and Is of considerable 

practical Importance. 

G. The Integral Equations 

With the Inputs to the filter part of the "intuitive 

system" now known and of the basic form 4.2, the integral 

equations for the generalized (n-m)-dimensional Wiener 

filter corresponding to the linear, algebraic operator shown 

in Figure 9 can now be written by inspection. Each of the 

n-m inputs is of the form N^ft) - Nj(t), so it would be 

convenient to have an expression for this difference, 

n 
Z [Ook(t)-Cj^(t)]n^(t) = Nn(t)-N,(t) 

k=l 

m 
= S 

k=l 
e x c ,  

' j k  

(-1) k+1 

k' 

^2,.. 

1 ,  . . . ,  m  
e x c .  k  

'0' j 

1 ,  • . . ,  m  
A  ( t )  
' 1 ̂ ^ m 

1, 

,m^ 

,m 
D.+l GXO. Pj 

+ (-1) J 

A^' * ( t )  
1 . .  . , m , m + j  
exc k'P.I 
1 , .  . ,m 

A ( t )  1—
1 

. ,m,m+j 
exc pj 

l, . . . , m  
A  ( t )  

*  1 ,  .  . . ,  m  

A 

+ (-1) 
m+1 

2 ,  •  •  . ,  m  

1 J  . .  • ,  m  
e x c .  p .  

( t )  

l , . . « , m  
A  ( t )  

ni"l"j 

(4 . 1 0 )  

e x c .  p  j 
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For the quantity inside the ^brackets in 4 .10, the minus sign 

i s  u s e d  w h e n  k  <  P j  a n d  t h e  p l u s  s i g n  i s  u s e d  w h e n  k  >  P ^ •  

Note that 4.10 gives an explicit expression for the quantity 

Cg^/t) - Cj^Xt) for k = l,...,n and j = l,...,r. Therefore 

4.10 along with the expression for 

X  O Q ^ ( t ) n ^ ( t )  =  N „ ( t )  =  s  ( - 1 ) ' " + ^  
k=l k' '0' k=l 

• " 
. ,m 

1 , . .  . ,m 
e x c .  k 
1, . . . ,m 

A 
1 , . .  . ,m 

( t )  

( t )  

n ^ f t )  ( 4 . 1 1 )  

could be substituted directly into 4 . 3  to get the desired set 

of integral equations for the optimum weighting functions 

yi(t,v),...,yy(t,v) shown in Figure 9. The result would be . 

a form for each of these integral equations which would not 

be at all convenient for later comparison to the "optimum" 

filter of Chapter III. Fortunately, however, the form of 

Cok(t) - Cj^Xt) shown in 4.10 can be simplified considerably 

with the aid of Theorem 1 of Chapter II. Note that although 

Theorem 1 was stated and proved in terms of a matrix A having 

constant elements a^^, the proof would not be altered by 

making a^j = a^j(t). Consequently Theorem 1 can be extended 

to a matrix whose elements vary with time. By putting the 

two terms within the brackets in 4.10 over a common denominator 

and then using Equation 2.1 to reduce the numerator, the 

quantity within the brackets of 4.10 can be written 
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1J • • • ̂ m 

^ 1 , . . . ^  
exc. k 

1,..., m 1 ̂ • • • J in 
A (t) • A (t ) 
1 ̂ * # • J ni lTl~hj 

(4. 1 2 )  

exc. p 
j 

for both k <• Pj and k > Pj. If this quantity Is substituted 

back Into 4.10, and both the numerator and denominator of the 

coefficient of n (t) are multiplied by 
Pj 

4.10 may be reduced to 

1J . . ., m 
A 
Ij...,m,m+J 
exc. Pj 

then 

n 
^^^[°0k(t) • CikXt)ln^(t) = 

m 
Z (-1) 
k=l 

k+1 

'Jk\"/'"k' 

2 ̂ ^ m 
A (t) 
1J ... J m 
exc. 

1, ..., m 
A 
1,...,m,m+j 
exc. k 

( t )  

1 ̂ • J m 1 • • 9 9 ^ ni 
A (t) • >

 

et
 

1 ̂ ^ m 1 ̂ ^ nij lU'l" J 

"k(t) 

exc. p 

2 J , # • J m 
A (t) 
1J • • • J m 

+ r°- 'i 
1 J • • • in 
A (t) 
1,...,m,m+j 
exc. Pj 

j 

(4.13) 

While the reduction of 4.10 to 4.13 may appear to be a minor 

step at this point, it is in reality a very important one. 

The integral equations for y^(t,v),...,y^(t,v) can be 

obtained by substituting 4.13 and 4.11 into Equation 4.3. 

After some rearranging, the resulting set of Integral 
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equations can be written in the following form: 

ft 
Jyn(t,v) 

2^ • , • ̂ in 
A (t-v) 
1J  •  •  •  J  m 
exc. p_ 

2, . . .,m 
A (t-u) 
1J .. # ^ m 
exc. p 

l,«..,m 
A (t-v) 
1,...,m,m+q 
exc. p„ 

1 ̂ #.. ̂ m 
A (t-u) 
l,...,m,m+q 
exc. p 

% m+q 

r t 
(t-u,t-v)dv + E f y.(t.v) • 

j=l 0 J 

2, ...,m 
A (t-v) 
1 ̂... J m, 
exc. p. 

l,...,m 
A (t-v) 
1,...,m,m+j 
exc. Pj 

2 J . , . J m 
A (t-u) 
1J  . . .  J  m 
exc. Pq 

1J . # . J m 
A (t-u) 
l,...,m,m+q 
exc. p 

m 
{ E 
k=l 

1 j ^ m 
A (t-u) 
l,...,m,m+q 
exc. k 

l,...,m 
A (t-u) 
1 ̂ ^ m 

q 

1J ... ̂ m 
A (t-v) 
1, .. .,m,m+j 
exc. k 

l, . . . , m  
A (t-v) 
1 ̂ ^ m 

-cp(t-u, t-v) }dv 

m 
- E 
k=l 

2,.. . ,m 2,.. 

I—
! 

.. ,m 
A (t) . A (t-u) • A (t-u) 
1,.. . ,m 1... . ,m 1,. ..,m,m+q 
exc. k exc. Pq exc . k 

1,. . . ̂ m 1,.. .,m 1, . .. ,m 
A (t) • A (t-u) • A (t-u) 
1,.. . ,m 1... . ,m 1,. ..,m,m+q 

cpk(t>t-u) = 0 

for 0 < u < t and each q = l,...,r (r 

exc. Pr 
(4.14) 

= n - m). 



www.manaraa.com

53 

This completes the development of the "intuitive" 

system. It is noted in passing that 4.l4 turns out to be a 

very convenient form for the integral equations specifying 

the weighting functions y^,...,y^. This fact will be 

appreciated more in the next chapter where the "intuitive" 

and "optimum" systems are compared. The reader is reminded 

of the importance of Theorem 1 in reducing Equation 4.10 to 

Equation 4.13, which in turn makes the relatively simple 

form of 4.l4 possible. 
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V. COMPARISON OP THE OPTIMUM AND INTUITIVE SYSTEMS 

A comparison of the "optimum" system developed In 

Chapter III with the "intuitive" system of Chapter IV shows 

that both possess the same general characteristics; that is, 

both are linear (possibly with time varying parameters), 

distortionless, and finite operating time filters. The 

"optimum" system was, of course, constrained to be distortion

less, but it is interesting to note that the distortionless 

property of the "intuitive" system arose quite naturally. 

To make a further comparison of the two systems it is assumed 

that both systems have the same inputs (namely those of 

Figure l), that these inputs are arranged in the same order, 

and that the assumption stated in 3.16 still holds, i.e. 

1, • • •, m 
A (t-v) 
1, • # ., m 

^ 0 for all v such that 0 < v < t. (5.1) 

Also, it is tacitly assumed throughout the remainder of this 

discussion that a solution of the set of Integral equations 

3.20 describing the "optimum" system exists. This is not to 

say that finding the expressions for w*(t,v),...,w*(t,v) 

which constitute the solution is an easy task, but merely that 

such expressions do exist if some means can be found to 

calculate them. 

All that is necessary to demonstrate that the "intuitive" 

system is indeed an optimum solution is to show that the mean-

square error associated with the "Intuitive" system is the same 

as the mean-square error associated with the "optimum" system. 
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Certainly a sufficient condition for this is that the 

over-all weighting function from input line i to the output is 

the same for the "intuitive" as it is for the "optimum" system 

for each i = l,...,n. And, in fact, this latter method 

turns out to be easier than the direct calculation and 

comparison of the mean-square errors since it avoids having 

to solve the set of integral equations associated with each 

system. 

Let (t,V) be defined as the over-all weighting function 

from input line i to the output of the "intuitive" system, and 

let w£(t,v) be retained as the symbol for the corresponding 

weighting function for the "optimum" system. Then in view 

of the above paragraph it is desired to show that w^(t,v) = 

w*(t,v) for each i = l,...,n. But the ."intuitive" system 

is distortionless so w^(t,v),...,w^(t,v) are expressed in 

terms of w^_^^(t,v), ...,w^(t,v) by Equation 3.18 with w^(t,v) 

replaced by w^(t,v). Therefore, w^(t,v) = w^(t,v) for 

i = l,...,m if w.^(t,v) = w*(t,v) for i = m+l,...,n, and the 

problem of showing the ""intuitive" solution is an optimum one 

reduces to showing that w^(t,v) = w*(t,v) for i = m+l,...,n. 

Since line m+ j enters only into the linear algebraic 

operator 0^, the output due to line m+j alone is given by 
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A 

0 
ry^(t,v)(-i) 
^ «J 

m+1 

2,.. . ,m 
(t-

1... . jm 
exc. 

1,.. . ,m 

1,.. .,m,m+j 
exc. 

(t-v) 

fm+j(t-v)dv (5.2) 

for j = The above expression can be written by 

inspecting Figure 9 together with Equation 4.7. It follows 

from 5.2 and the definition of the over-all weighting function 

w^(t,v) that 

2 J ,, • J m 

"m+j = (-1) 
m+1 

A (t-v) 
1J... J m 
exc. p. 

1 ̂ ^ m 
A (t-v) 
1,...,m,m+j 

yj(t,v) ( 5 . 3 )  

exc. p 
J 

for j = l,...,n-m. Note that 5-3 is true regardless of the 

behavior of the determinants in the numerator and denominator 

of the right-hand side of the equation. 

An examination of 4.l4 reveals that the quantity 

2 ̂ m 
A (t-u) 
1 ̂ ^ m 
exc. p 

1,...,m 
A (t-u) 
1,...,m,m+q 
exc. p 

( 5 . 4 )  

appears in every term on the left-hand side of the equation 

and does not involve the variable of integration or any of 

the indices of summation. Therefore, this quantity may be 



www.manaraa.com

57 

factored out of each term. At the same time Equation 4.l4 

may be multiplied through by (-l)"^"*"^ and Equation 5.3 used 

to replace yj(t,v) by for each J = l,...,n-m. 

Thus, in terms of its over-all weighting functions, the 

set of integral equations describing the "intuitive" system 

can be written as 

2, «. «, m 
A (t^u) 
1, .. •, m 
exc. Pi_m 
l,...,m 
A (t-u) 
1, «..,m,i 
exC' Pi-m 
n t 

+ S f w.(t,v) 
J=m+1 0 ̂  

{J w^(t,v)ç^(t-u,t-v)dv 

1 ̂ # * • J in 1 > • # • J m 
A (t-u) • A (t-v) 
1 ̂ ^ m 1 ̂ # e • ̂ m 

m 
C E 
k=l 

m 
+ (-1)'" Z 

k=l 

l,..,,m 

exc. k 

l, . . . , m .  
A (t-u) 
1,...,m,i 
exc. k 

1 >.. •, m 

exc. k 

2 J » • • ̂ m 
A (t) 
1 ̂ ^ m 
exc. k 

cpj^(t-u,t-v) }dv 

1 > • • • J m 
A (t-u) • A (t) 
1 ̂ e e • J m 1J • • • J m 

cp^(t-u,t)} = 0 

(5.5) 

for 0 < u < t and each i = m+l,...,n. Note that in going, 

from 4.14 to 5.5 the dummy index q has been replaced by i-m 

and the dummy index j has been replaced by j-m. These 

changes of indices are made so that 5.5 niay be more con

veniently compared to 3.20. 
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For the remainder of the discussion, it is assumed that 

there exists at least one set of integers 

where as before r = n-m, such that for each of these integers 

the determinants 

— 7 J 
A (t-v) 

and 

1,.. . ,m 

1,.. .,m,m+j 
exc. 

2,.. . ,m 
(t-v 

1,.. . ,m 
exc. pj 

(5.6) 

(5.7) 

goes to zero at most at only a finite number of isolated 

points in the interval 0 < v < t. This assumption on 5.6 

along with 5.1 insures that there are at least (n-m+l) m 

by m submatrices of the matrix A(t-v) which have nonzero 

determinants almost everywhere in the Interval 0 < v < t, 

which in turn implies that Equation 4.5 can be solved for 

s^(t) almost, everywhere in the n-m+l different ways suggested 

in the "intuitive" approach. The above assumption on 5.7 

insures line m+j is not given zero weight over any subinterval 

of the interval 0 < v < t by the rather arbitrary choice of 

the linear, algebraic operator. If the determinant 5.7 were 

zero on some subinterval, it could be argued intuitively 

that any system incorporating this linear, algebraic operator 

could not, in general, be expected to be an optimum system 

since the decision to give line m+j zero weight over that 

subinterval would be based qn the arbitrary choice of the 
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linear, algebraic operator and not on any property of the 

noise n^^j(t). Notice that the assumptions at the beginning 

of this paragraph are just the properties that one would 

normally expect these determinants to have when picking a 

linear, algebraic operator, so these assumptions amount 

to assuming that at least one "reasonable intuitive" system 

exists. Prom this point on, unless otherwise stated, when 

an "intuitive" system is mentioned it is understood that, at 

a minimum, the determinants 5.6 and 5.7 are nonzero except for 

a finite number of isolated points in the interval 0 < v < t 

for each integer included in the set of integers p^,...,Pp 

associated with the particular linear, algebraic operator. 

Proceeding to the direct comparison of the Integral 

equations which describe the "optimum" and "intuitive" 

systems, it is observed that the two systems are most easily 

compared when neither the determinant in the numerator nor 

the determinant in the denominator of 5.4 is zero anywhere in 

the interval 0 < v < t. In this case the quantity in front 

of the braces in 5.5 is nonzero which forces the quantity 

within the braces to be zero. If this is true for each 

1 = m+l,...,n (recall that q = i-m), then comparison of 5.5 

and 3.20 reveals that w^(t,v) = w|(t,v) for each value of i. 

Therefore, the "intuitive" system is indeed an optimum one 

for this case. Furthermore, Equation 5.3 can be solved 

for yj(tjv) in terms of and for this case, it is 

observed that for any fixed values of t and v, yj(t,v) is 
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just a nonzero constant times w^^j(t,v). This means that not 

only is the existence of a solution to the set of integral 

Equations 4.l4 assured, but also yj(t,v) is as "well behaved" 

The situation considered in the previous paragraph is of 

considerable practical interest, but it seems as though, at 

least under certain assumptions, the "intuitive" system 

might be an optimum one under less restrictive conditions 

than assuming both the numerator and denominator of 5.4 

nonzero everywhere for all values of q = l,...,r. To see how 

these restrictions might be relaxed, consider all the noises 

n^(t),...,n^(t) to have smooth, bounded autocorrelation' 

functions. Under this assumption, each noise has a timewise 

correlation with itself and something can be said about the 

value of n^(t) from a measurement of this noise at time 

t + e, where e is small. Consequently, if a measurement of 

n^(t) is unreliable or not available, all is not lost if a 

measurement of n^(t+e) is available. 

In addition to the above assumption about the noises, 

consider t to be fixed in the following discussion. Also 

make the assumption that the optimum weighting function 

w*^l(t,v) is a smooth, bounded function in the open interval 

0 < V < t. Notice that it might not be necessary to assume 

this property, that might possess it quite naturally 

from the solution of the set of integral Equations 3.20. 
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But the property is assumed here in the absence of a solution 

to 3.20. 

For the first case in relaxing the restrictions consider 

the determinant in the numerator of 5.4 to be nonzero every

where for all values of q and the determinant in the denomin

ator to be nonzero everywhere for q = 2,...,r. For q = 1, 

the determinant 

1 ̂ # # • J m 
A (t-u) (5.8) 
1,...,m,m+l 
exc. p^ 

is assumed nonzero for all u in the interval 0 to t except at 

the point u^(0 < < t) where it is zero. If the set of 

integral Equations 5.5 specifying the over-all weighting 

functions of the "intuitive" system is compared to 3.20 for 

this case, it is observed that the quantity within the 

braces in 5.5 is forced to be zero which means that over-all 

weighting functions for the intuitive system are forced to 

obey the same set of integral equations as the "optimum" 

weighting functions. Consequently, for this case too, it is 

found that w^(t,v) = w*(t,v) for each i = m+l,...,n, and the 

"intuitive" system is again optimum. This case is interesting 

for two reasons. One is that at first glance it appears as 

though there might be some doubt as to whether a solution 

exists to the set of integral Equations 4.l4 since the 

integrands involving.the quantity 5.8 are unbounded. 

However, 5.3 and the assumption on w*^^(t,v) assure us that 
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yj(t,v) does exist for each j = l,...,r. The second is that 

the operator 0^ does not exist at time t-u^ and it might 

appear at first that the solution could not be an optimum. 

However, it must be remembered that a finite amount of past 

data, not just the data at one instant, goes into making the 

estimate of s^ at time t, and furthermore the determinant 

5.8 being zero at u = u^ effects the optimum solution, too, 

although not in such an obvious way. This concept may be 

extended to cases where 5.8 goes to zero at several points in 

the interval 0 < u < t, and then also to similar situations 

for other values of q. 

Next, let's try to relax the restriction that the 

determinant 

2 , . . . , m  
A (t-v) 
1,.. •, m 
exc. p 

( 5 . 9 )  

q 

is nonzero everywhere for each value of q = l,...,r. To 

examine this case, consider the denominator of 5.4 nonzero 

everywhere for each q = l,...,r, and the numerator of 5.4 to 

be nonzero everywhere for all values of q except q = 1. 

For q = 1, the determinant 

2,. . », m 
A . (t-u) 
1 ̂ ^ m 
exc. 

(5.10) 

is assumed nonzero for all u in the interval 0 to t except at 

the point u^(0 < u^ < t) where it is zero. Comparison of the 
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set of Integral Equations 5-5 specifying the over-all 

weighting functions for the "intuitive" system to the set 

3.20 for the "optimum" system shows that for i = m+2,...,n the 

quantity within the braces in 5.5 must be equal to zero, and 

therefore these n-m-1 integral equations are the same for 

both systems. For i = 1 there is one value of u, namely u^, 

for which the quantity outside the braces in 5.5 is zero and 

consequently the quantity within the braces is not forced to 

be zero. But there is nothing wrong with setting it equal to 

zero anyway at this point and if this is done, the set of 

integral equations describing the over-all weighting functions 

for the "intuitive" system is again the same as the set for 

the "optimum" system. There is still one difficulty though, 

which is that even though a solution to the "optimum" system 

is assumed to exist, and consequently w^^^(t,v) exists, there 

is no assurance that y^(t,v) exists at v = u^. However, 

since it is also assumed that w^+^ft/v) is smooth and bounded 

for 0 < V < t, which seems a reasonable assumption, then 

5.3 shows that y^(t,v) becomes unbounded at v = u^ in si h a 

way that the limit of the product 

2 
A (t-v) 

(t-v) 

yi(t,v) (5.11) 

A 
1, ... ,m,m+l 
exc. p^ 
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remains bounded as v-U3_. All of this suggests a way to solve 

the set of integral Equations 4.l4, for this case, in such 

a way as to "force" the "intuitive" system to be optimum. 

That is. Instead of solving directly for y^(t,v), ygft^v), 

. ..,yr(t,v), solve for y2(t,v), .. . ,y^(t,v) and 

then get y^(t,v) from 5.3. ^ 

The concepts discussed in the above case may be extended 

to situations where 5.10 goes to zero at several values of u 

within the open interval 0 < u < t, and then also to similar 

situations for other values of q. 

The results of this chapter may be summarized as follows: 

1. If the determinants in both the numerator and the 

denominator of 5.4 are nonzero for all values of u in the 

interval 0 5 u < t and for each q = l,...,n-m, then the 

corresponding "intuitive" system is an optimum system. 

2. Under the assumptions that the autocorrelation 

functions of the noises are smooth, bounded functions and the 

weighting functions w*_^^ (t, v), .. . ,w*(t, v) are smooth, bounded 

functions in the open Interval 0 < v < t (t is considered 

fixed here), it is possible to allow the determinants in 

5. 4  to be to zero at a finite number of isolated points. The 

"intuitive" solution will still be an optimum solution 

providing a certain care Is used In solving the Integral 

equations for the "intuitive" system. 
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Because of the assumption on the "optimum" weighting 

functions and the fact that the "intuitive" system is 

"forced" to be optimum, the latter result appears to be of 

limited usefulness, practically speaking. This difficulty 

could possibly be alleviated by deriving necessary and/or 

sufficient conditions for the existence of a solution to a 

set of integral equations of the form of 3.20 or 4.l4. 

However, this would probably be quite a difficult task. 
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VI. AN EXAMPLE USING THE WIENER FILTER 

An example with four Input lines, two 

signals, time stationary Gaussian noises and a constant A 

matrix is considered in this chapter. The system or 

filter is allowed to operate on an infinite amount of the 

past data. Consequently the optimum filter turns out to be 

a constant parameter linear one. This type of example is 

chosen because the integral equations associated with it are 

much easier to solve than those for the more general type 

of problem treated in the previous chapters. The four 

available input lines are of the form shown in Figure 3 with 

A = fl l] (6.1) 

1 2 

1 -1 

1 -2 

and the autocorrelation functions of the noises given by 

*l(t) . e-lt' 

cpg ( t ) = 5 ( t ) 

- Ogft) = e-2(tl (6.2) 

w^(t) = 46(t) 

This completes the specification of the problem. In 

the following sections, the "optimum" filter and 2 of the 

l6 possible "intuitive" systems are considered. 

A. The Optimum Filter 

The set of integral equations describing the optimum 

filter for this example is given by 3.20 specialized to an 
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Infinite operating time, constant parameter filter, time 

stationary noises, and a constant A matrix. These changes 

allow letting t-*oo, replacing w*(t,v) by w*(v), replacing 
J J 

cpĵ (t-u, t-v) by co^(u-v) and cp^(t,t-u) by cp^(u), and dropping 

the arguments in the determinants appearing in 3.20, 

respectively. Also, wj(v) can be defined as being zero for 

v < 0 to satisfy the requirement of physical reallzabillty, 

and the lower limit on the Integrals changed to -œ. Once 

3.20 is put Into the form described above, one can take the 

Fourier transform of both sides utilizing the convolution 

theorem from Fourier transform theory. Letting m = 2 and 

n = 4, the transformed set of integral equations describing 

the optimum filter can be written 

W*(s)0 (s) + S W*(s)[ S 
^ ^ J=3 J k=l 

1,2 
A 
1,2,1 
exc. k 

1,2 
I 
1,2, j 
exc. k 

1 , 2  
I 
1 , 2  

2 
r E 
k=l 

1,2 2 
A . A 
1,2,1 1,2 
exc. k exc. k 

1,2 
A 
1 , 2  

Cî)k(s) = A^fs) for 1 = 3,4 (6.3) 

where W*(s) = Fourier transform of w^(t) with jou replaced by 

({)^(s) = Fourier transform of cp^(t) with jw replaced by 

A^(s) = an unknown function which has all its poles in 

the right-half s-plane 
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Notice that Is just the familiar power spectral density 

with Ju) replaced by s, and for the two white- and two 

Markov-noises of this example are given by 

(t)^ ( s ) = — 
^ -s^+1 

0o(s) = ] 

03(8) = -ig 
-s 

( 6 . 4 )  

-+4 

<$>4(3) = 4 

Also, thé various determinants involved in the two integral 

equations are given by 

1,2 
I 
1,2 

1,2 
I 
1,3 

1,2 
A 
2.3 

1,2 
I 
1.4 
A 

= 1 

=  - 2  

= -3 

= -3 

1,2 
I 
2,4 

= - 4 

A, 

A. 

= 2 

= 1 ( 6 . 5 )  

Substituting these quantities into 6.3, the two transformed 

equations describing the optimum system become 

4 . 9(2) ^ in 4. w»^»irl2M 
—s +4 -s +1 

+ + 4] + W%(s)[A5^ + 6] 
- ^ -s^+1 

6 ( 2 )  
2 ~2 — A^(s) 

— s +1 
(6 .6 )  
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and W*(8)[^2(2) + g] + Wj(s)[4 + -^(^0 _ 3] 
^ -s^+1 ^ -s^+1 

- 3 = A^( s ) 
-s^+1 

The method of undetermined coefficients is used here to 

solve 6.6 for W^(s) and W^(s). This method is similar to that 

suggested by N. Wiener in Chapter 4 of (9) and is also 

discussed by way of example in Chapter I5 of Brown and Nilsson 

(5). The notation used here is similar to that used in the 

latter. The basic method involves solving for W*(s) 

and W^^s) from the two nonhomogeneous equations of 

6.6 just as if Agfs) and A^(s) were known, then expanding 

the resultant expression for each by partial fraction 

expansion utilizing the fact that A^fs) and A^(s) have all 

their poles in the right-half s-plane whereas W*(s) and 

W]|(s) have all their poles in the left-half s-plane. For 

example, W*(s) is given by 

W*(s)= ("2s^+l4)(-135^+43)(-s^+4)-(-6s^+3Q)(-3s^+9)(-s^+4) 

.3 (-s^+1)(i6s^-206s^+540) 

(-133^+45)(-S^+4)A2(S) - (-6S2+30)A^(S) 

• l6s^ - 206s^ + 540 

Since W^(s) is allowed to have only poles in the left-hand 

s-plane, it is found that it must be of the form 

^3(9) = 8& 8+3.19 8+1.915 ^ (^^7) 

Similarly, W|(s) is found to be of the form 
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"î( = ) (S.8) 

A constant term needs to be included in each of these expres

sions because of improper fractions. However, since the 

noise on line 4 is white, the constant in W^fs) must be zero 

or the output from that line would be Infinite which would 

obviously not result in a minimum mean-square error. The 

next steps are to substitute 6.7 and 6.8 into the first of 

Equations 6.6, multiply, perform a partial fraction expansion 

of the product terms, and collect the coefficients of similar 

terms. The resulting equation must be an identity in s, and 

A^fs) has no poles in the left-half s-plane. Therefore, the 

coefficients of all the terms whose poles are in the left-half 

s-plane, in this case the coefficients of —-—g, 
(s+l) 

1 1 
s+3 19^ and must vanish. This results in,5 equations 

in the 7 unknown constants k^,...,k^. Substituting 6.7 and 

6.8 into the second of Equations 6.6 results in 4 more 

equations, only 2, of which are independent of the 5 derived 

above. Omitting all the algebra, the resulting 7 independent 

equations are 

4k ̂ + Sk^j^ = 0 

21k^ + 7.31k2 + 17.48k^ + IZk^ + 5.49k^ + 13.l4kg+12k^= 8 

6k^ + 2.74k2 + 6.56kg + 9.l4k^ + 2.06k^+ 4.91kg+ 4.5k^= 3 

g.llkg + 3.075kc = 0 

0.942k2 - 3.04kg = 0 

-0.5k^ + 0.42k^ - 5.88kg + 0.5k^ = 0, and 2ky = 1 
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Prom these it is found that 

= 0 

kg = 0.040 

kg = 0.11 

k^ = -0.120 

kg = 0.034 

k^ = 0.500 • 

This completes the determination of the optimum transfer 

functions W*(s) and W|(s). The transfer functions W£(s) and 

W*(s) are given in terms of these by the Laplace transform 

of Equation 3.18 specialized to this problem, which becomes 

,1+1 (-1) 
w * ( s )  

I 
1,2 

C a2 
4 

+ e 
1.2 .1=3 
exc. 1 

1,2 
A 
1,2, j 
exc. i 

W*(s)} 

for 1 = 1,2. With this it is found that 

wjcs) = 0.500. 

W * ( 8 )  0.119 + 0.397 
8+3.19 8+1.915 

W*^8) 0.500 _ 4.120, + 
s+3.19 s+1.915 

( 6 . 9 )  

If the weighting functions for the "optimum" system are 

desired, they can be found by taking the Inverse Laplace 

transform of Equation 6.9. 
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Although not needed for this example, the mean-square 

error is of Interest. It can be found by specialization of 

the equation for e2(t) given In Chapter III (just before 

Equation 3.7) to this example, or by 

—Ô 00 4 2  
(t) = J I^|W*(jw)|^(&i(jw)dw (6.10) 

since It Is a steady state error . The calculation Is not 

shown here, but the result Is 

e^(t) = 0.424. 

B. First "Intuitive" System 

The first "intuitive" system Is chosen to fit the form 

of Figure 9 with p^ = 1 and Pg = 2 and is shown in Figure 11. 

The Integral equations for y^(t) and y^ft) are given by 4.i4 

specialized to an infinite operating time, constant parameter 

filter with time stationary noises and constant coefficients 

on s^(t) and ^^(t). As in the previous section, the integral 

equation of 4.l4 can be transformed. The quantities of 

interest are given in 6.4 and 6.5. Upon substitution of these 

quantities, the transfer functions Y^(s)'and Ygfs) can be 

written (after multiplying the first through by (- -|) 

and the second through by (-3)) 

See for example Chapter 13 of Brown and Nllsson (5) 
for a discussion of this method and a short table for 
evaluating integrals of this form. 
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-1 2n 

2n 

Figure 11. The first "intuitive" system for the Wiener 
example 

+ 28g + ng 

Si - ZSg + n^ 

Si + Sg + n^ 

» _1 
3  

+ 

-g(ng + n^) - eg 

:30 

2'^2+ "5^4 " 3^1 
V Y{(s) J Y{(s) 

-K\ 

s^ - Sg + n^ 

+ -i"2 + hk 
2 
3  3 |  

Y^(8) 

Figure 12. The second "intuitive" system for the Wiener 
example 
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- |yi(s)(-4- + 4) + (- jr (s))+ 6) 
J J- -s^+4 -s^+l -s^+1 

+ + 2 = A^(s) 

and - .^Y (8)(12(2) + g) + (_ (s))(4 + _ 3) (6.11) 
^ ̂  -s^^+l ^ -sT+l 

+ + 3 = A (s) 
- 8 + 1  ^  

where A^fs) and Agfs) are unknown functions having all their 

poles in the right-half s-plane. 

These equations can be solved for Y^(s) and Ygfs) very 

easily by comparison to Equations 6.6. Notice that since 

A^(s), A^(s), A^{s), and A^(s) are unknown functions, it cannot 

be said that A^(s) = A^fs) and Ag = A^fs). However, the 

effect of these unknown functions on their respective equa

tions is such that it can be said from comparison of 6.6 

and 6.11 that 

I Y^fs) = W*(8) 

( 6 . 1 2 )  

•i Yi(s) = W|(s) 

The truth of this latter statement can easily be inferred 

from an article by Wong and Thomas (lO) describing a general 

method of solving systems of equations of this type. 

2 The easiest way to show that the mean-square error e^ 

associated with this "intuitive" system is the same as that 

of the "optimum" system is to compare the over-all transfer 
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functions W^(s) of the "intuitive" system with the optimum 

transfer functions W*(s). It is observed from Figure lithat 

Wgfs) =1 Y^(S) 

*4(8) = 3 Ygfs) 

It follows from these equations and Equations 6.12 that W^fs) 

= W*(s) and W^fs) = W^fs). Also, from Figure 8, it is observed 

that 

W ^ ( s )  =  2  -  2 Y ^ ( s )  -  2Y2 ( s )  +  |  Y ^ { s )  

= 2 - SW^Cs) - 4W2^(S) 

= W*(s) 

and Wg(s) = -1 + Y]_(s) + Y^{s) + 1 Y^(s) 

= -1 + 2W^(8) + SW^fs) 

=  W * ( s )  

Since all the transfer functions are the same, the systems 

are equivalent, and obviously the mean-square errors are 

the same. 

C. Second "Intuitive" System 

For the second "intuitive" system the inputs are 

rearranged as shown in Figure 12. Notice that the "intuitive" 

system in Figure 12 fits the form shown in Figure 9 with 

p^ = 1 and Pg = 2. The integral equations for y|(t) and 

y^(t) are given by 4.l4 specialized to the assumptions of 

this example. These integral equations can be transformed 

as before by defining y^(t) and y^(t) as being zero for 

t < 0. The quantities of interest are now given by 
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Cj) ( s ) — Cpg ( s ) — 1 

= 04(3) = 4 

4)0(s) = (k (s) = —^2— 
^ -8 +1 

^) - 2" 

(6.13) 

— s +4 

and (leaving off the prime notation on the new A matrix) 

1,2 
A 
1,2 

1,2 
I 
1,3 

1,2 
I 
2.3 

1,2 
L 
1.4 

a 

a 

a 

= -4 

= -1 

= 3 

= -3 

1,2 
a 
2,4 

2 

= +1 

A. =  - 2  

= +2 ( 6 . 1 4 )  

Upon substitution of these quantities, multiplication of the 

first equation through by (-24), and multiplication of the 

second equation through by (-8), the transformed integral 

equations specifying the transfer functions Y^(s) and Y^(s) 

can be written 

- i yj_(s)(9 + 4 4-1^^) - |y^(s)(3 + 12) 
— s +1 

+ 6 + 8 = Aj^(s) 

2,,. 2, and - &' (s)(3 + 12) - (s)(l + 36 + ̂ ^^) 
^ ^ -8+4 

+ 2 + 24 = A^(s) 

(6.15) 
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where Aj^(s) and A^(s) are unknown functions having all their 

poles in the right-half s-plane. 

Since it is not possible to solve for Yj^(s) and Y^(s) by 

simply comparing Equations 6.15 to Equations 6.6, the method 

of undetermined coefficients will be used to solve for these 

quantities. The calculation proceeds much as it did in 

solving for W^(s) and W^(s) in the first section of this 

chapter, so most of the details are left out here. By 

solving the two nonhomogenous equations in 6.15 for Y^(s) 

and Y^(s) and looking at the significant terms, i.e., the 

ones with poles in the left-half s-plane, it is found that 

Yj^(s) and Y^(s) are of the form 

•§Yi(s) = + 8+3.19 S+I?915 

and "3^2(^) = ̂ 4 + s+3.19 s+l.915 (6.16) 

When these equations are substituted back into the first of 

the equations in 6.15, the result must be an identity in s. 

Since Aj^(s) has no poles in the left-half s-plane, the 

coefficients of all the left-half pole terms on the left-hand 

side of the resulting equation must be zero. The same 

argument can be used when Equations 6.16 are substituted into 

the second equation in 6.15. Together these yield six 

independent equations in six unknowns k^,...,kg. The six 

equations are: 
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l6k^ + 7.31IC2 + 17.5IC2 = 0 

g.lSSkg + ISkg = 0 

o.g^gkg + 15kg = 0 

l6k^ + 13.44k^ - 188kg = 0 

13k^ + isk^ = 14 

15%! + 37k4 = 26 

From these It is found that 

k^ = 0.500 

kg = 0.197 

k. = -0.540 

k^^ = 0.500 (6.17) 

k^ = -0.121 

kg = 0.0339 

This completes the determination of the second "intuitive" 

system, but it is desired, of course, to compare this system 

to the "optimum" system. One way to do this is to compare 

the over-all transfer functions W^(s) of this system with 

those of the "optimum" system'. The systems are equivalent 

if W|(s) = W*(s), W^(s) = W^(s), W^(s) = W*(s), and W^(s) = 

W*(s). From Figure 12, it is observed that 

W. (S) = |Y' (S) = 0.500 H- ^$1% - = Wf(s) 

W4(s) = |Yr (s) = 0.500 - = W|{s) 

W{(s) = -g - (8) - ~ •^)Y^{s) 
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w. ,(s) = "I - ("I - i)Y{(s) - |Y^(S) 

_ 0.041 , 0.1096 _ 
8+3.19 8+1.915 

= W%(8) 

Thus, the second "intuitive" solution is an optimum solution, 

too. 
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VII. AN EXAMPLE USING THE KALMAN FILTER 

Prom the discussion in Chapter V, the reader may have 

the impression that the conclusion reached in Chapter V, 

namely that under appropriate assumptions the "intuitive" 

system is an optimum one, is of limited usefulness. The 

only advantage that the "intuitive" system has is that it 

reduces the original problem of finding the optimum, linear, 

distortionless filter for estimating s^(t) from the available 

inputs to a form whereby the estimate can be made by coupling 

a "ready made" filter into the system. For continuous systems, 

the "ready made" filter is the generalized (n-m)-dimenslonal 

Wiener filter. The only problem is that the integral 

equations for the generalized Wiener filter are at least as 

hard to solve as the integral equations describing the 

"optimum" system, and in addition, certain problems about 

the existence of the solution arise when some of the deter

minants in the linear, algebraic operator go to zero at one 

or more isolated points in the interval 0 to t. Consequently, 

now that the Integral equations for the optimum, linear, 

distortionless filter have been derived and are given by 

3.20, it seems advisable to solve them directly and forget 

about the "intuitive" system for the continuous case. 

For discrete systems, the Kalman filter (8) can be 

chosen as the "ready made" filter (this assumes, of course, 

that noises n^(t),...,n^(t) can be generated by the use of 
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shaping filters with white-noise inputs). Since the Kalman 

filter is the discrete analog of the generalized multi

dimensional Wiener filter, i.e., both minimize the mean-

square error and have the same estimation properties for 

their respective input-output relationships, what was 

proved for continuous systems utilizing the latter should be 

true for discrete systems using the former. In other words, 

if only discrete measurements of the inputs shown in Figure 1 

are available, then an "intuitive" system using the linear, 

algebraic operator of Chapter IV and the Kalman filter 

ought to be an optimum filter (under the linear, distortion

less constraint) for estimating s-j_(t). This is a very 

useful result for discrete systems for the following reasons: 

1. It eliminates the need for deriving the equations 

for an "optimum" discrete filter. 

2. In contrast to the "ready made" filter for the 

continuous "intuitive" system, the "solution" to the Kalman 

filter is easily obtained. In fact, finding the "solution" 

consists of nothing more than straight forward calculation 

since the Kalman filter was designed specifically for a 

numerical, computer solution. 

3. The fact that one or more of the determinants 

involved in the linear, algebraic operator vanish at certain 

isolated points in the interval 0 to t presents no difficulty 

since these determinants are known functions of time, and 
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each sampling instant can be chosen so that none of the 

determinants involved are zero at that time. 

4. If two "Intuitive" systems are constructed and have 

the same sampling times, it follows that they will have the 

same mean-square error since both will be optimum. 

The example which follows in Section B of this chapter 

amounts to a proof of this last statement for m = 2 and n = 3. 

In addition it will serve as the example of the theory 

developed earlier for the general case where the noises are 

nonstationary, the A matrix is a function of time, and only a 

finite amount of past data is used in making the estimate. 

A. The Kalman Filter Equations 

The equations and presentation of the Kalman filter 

given here are taken largely from unpublished notes by 

R. G. Brown (4), but only a very brief outline of the 

method is offered here. The reader is referred to these 

notes or other publications for a more complete description. 

Most of the notation in this section is the same as that 

used by Brown, the only exception being that a letter 

signifying a column vector is underlined here. The notation 

is summarized as follows: 

1. An underlined, lower case letter denotes a column 

vector. 

2. An upper case letter is used to denote a matrix, 

with the notable exceptions of b and cp which are also matrices. 
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3. A subscript n on any of the above quantities is used 

to show that the quantity is evaluated at time t^; e . g . ,  

^n = bft^) and = z(t^). 

The mathematical model of the system is assumed to be of 

the form 

—n+1 "" "^n^n -^n ' (7.1) 

Zn = % + % (7-2) 

Where 

= state of the system at time t^ 

cp^ = transition matrix 

= column vector of state responses due to all of the 

independent white-noise driving functions that 

occur in the Interim between t^ and t^^^ (Note that 

only white-noise driving functions are allowed in 

the mathematical model.) 

= output vector (i.e., the "observable") 

= observation noise 

= output matrix 

Furthermore, the measurement errors are assumed to be 

uncorrelated (both component-wise and timewise) and unbiased, 

i.e., 

for i = n (7.3) 

0 for i n 

where is a diagonal matrix whose terms are the variances 

T of the respective measurement errors, is the transpose 

of the column vector and the notation E[x] indicates 
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taking the expected or mean value of x. 

For the filter, the linear relationship 

•in =-iA + - iA) (7.4) 

Is assumed where ̂ n is the observed quantity at t^ and 

—n ~ best estimate of _Z]^ based on all past measurements 

up through .Z^-i (the a priori estimate of jz^) 

= best estimate of based on all measured data up —n —n ^ 

through 2^ (the a posteriori estimate of 

bn = "weighting" matrix 

Because the driving functions are white the a priori estimate 

of is given by 

^A " "n-Â-l (7.5) 

Also, the output vector % corresponding to is given by 

ZA = "nSA (7.6) 

The weighting matrix b^ is then chosen to minimize the loss 

function L which is given by 

L = E[(t^-z^)^(|„-z„)] -

- (7.7) 

where e^ is the estimation error. Note that L is a scalar —n 

and just the sum of the variances of the estimation errors in 

the elements of the state vector. It can be shown that 

minimizing this sum is equivalent to minimizing each 

individually, so the Kalman filter minimizes the mean-square 

error associated with the estimation of the elements of the 

state vector z: . —n 
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It is convenient to define two error-covariance matrices 

and P* as 

= E[e„ (7.é) 

and p* - ECe;, (7.9) 

where e' = 2'-z_ is the a priori estimation error. —lA —n —n 

The derivation of the expression for the optimum weighting 

matrix is not shown here but the result is 

\  (7.10) 

Once b^ is determined, the a posteriori estimate is given by 

(from 7.4 and 7.6) 

in = lA + - Mj') (7.11) 

The a posteriori error covariance matrix can be computed from 

Pn = <7.12) 

One can then extrapolate ahead and P^ to get and P*^^ 

by the equations 

îk-̂ l = "Pnin (7.13) 

P^+l = «-nVn + Hn (7-l") 

where Is the covariance matrix of the state responses due 

to the white-noise inputs, i.e., 

«n = (7.15) 

Equations 7.10 - 7.14 comprise the iterative solution for 

the Kalman filter. As is the case for any iterative process, 

one must know or assume some initial values to get started. 
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B. The Example 

In this example, the problem of estimating s^(t^) from 

three available input lines is considered by the two 

"intuitive" methods shown in Figures 13 and l4. The 

coefficients a^^, the signals and the noises n^^ are all 

explicit functions of time, but the time dependence is not 

shown in the figures for notational convenience. Also, the 

notation 
1,2 
A 
i, j 

A is used to save writing. Discrete 

measurements are made without error of y^, y, , and the 

"secondary observables" of both systems at the sampling times 

t^, tg,...,t^. (Actually, the physical situation might be 

that the input lines are measured, with the measurement error 

being included in the noises, and y^^, y^, and the "secondary 

observables" are calculated without further error.) Each 

of -these sampling times t. ia chosen so that all of the 
J 

quantities a^g, a^g, a^g, A^ g , A^ ^ , and Ag ^ are 

nonzero when evaluated at tj. The only assumptions made about 

the noises is that n^tt) is related to a white-noise function 

f^(t) by a first order, linear differential equation, and 

that the white noise functions f^(t), fg(t), and f^ft) are 

mutually independent. 

For the system in Figure 13, the Kalman filter is to be 

used to estimate the quantity 

|Ai^g(t^) I ^ (7.16) 
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12"2 

secondary observable 

the "observable 
for the Kalman 
filter 

21 1 

-a 

-a 
12 

1^1,2I 

22 

Figure 13. Linear, algebraic operator for "System a" 

^•11^1 ^"12^2 ^1 

^"21^1 ^22®2 ^2 

'"31^1 ^32®2 •*" "3 
"^12 • 4^ 

^l,3l 

the "observable"' 
for the Kalman 
filter 

' ®1 "*• |A^ 2|(&32"l " ^12^3^ " 

"secondary observable" 

Figure l4. Linear, algebraic operator for "System b" 
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from the measurements of y. at times t,, t^,...,t„. This a. X n 

estimate can then be subtracted from the measurement of the 

"secondary observable" at time t^ to get an estimate of s^(t^). 

The error associated with this estimate of s^(t^) is 

Similarly, for the system, of Figure 13, the Kalman filter is 

to be used to estimate the quantity 

l^l,3^^n^l ^ (7.17) 

from the measurements of y^ at times t^,t^,...,t^, and this 

estimate subtracted-from the measurement of the "secondary 

observable" at time t^ to get an estimate of s^(tj^). The 

error associated with this estimate of s^(t^) is 

Before proceeding farther, it is worthwhile to point out 

that the notation used in this section is chosen to agree with 

that used in the previous section. In addition the following 

notation is used: 

1. z^(t^^ is the i^^ component of the column vector . 

Later, it will be convenient to use the notation zi(t^) = 

2. 18 the element in the 1 row and j column 

of the matrix P^. 

3. Similar notation is used for the elements of the 

other column vectors and matrices. 

4. Many times it will be convenient to show the time 

dependence (or the specific fixed time of evaluation) on one 

side of an equation and not on the other. When this is done. 
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it is to be assumed that both sides are evaluated at the 

same point. 

The state variables, Zg, and of the Kalman 

filter can be assigned as 

= n^(t) for 1 = 1, 2, 3 (7.18) 

The assumptions on the noises insure that these three state 

variables are enough to completely describe the system and 

that the mathematical model has only independent white-noise 

driving function's. Notice that the specific expressions for 

the transition matrix and the covarlance matrix of the state 

response due to the white-noise Inputs, H^, cannot be derived 

unless the differential equation relating n^(t) and f^(t) is 

known for each 1=1, 2, and 3. However, is always a 

symmetrical matrix and cp^ is a diagonal matrix for this 

example since the noises n^(t), ngft), and n^ft) are mutually 

independent. 

Since the measurements of the "observables", y and' y, , 

are made without error, the matrix is identically zero for 

both the Kalman filter of "System a" and the Kalman filter of 

"System b". 

The only matrices (of the ones that are known) which are 

not the same for the two systems are the matrix associated 

with "System a" and the matrix associated with "System b", 

ri. "b 
which are denoted and M^, respectively. From Figures 13 and 

l4 the expressions for y^^ and y^ can be written as 
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^22 „ / ^32 , ^12 , ^22 
(7.19) 

. ^OP ^op . ^-| p 9'i p 

= '"FITF ' "FI^T 1 ' "TViT '2 + l^'s ''^•2°' 

Since none of the quantities involved in the coefficients in 

7.19 and 7.20 are zero at the sampling times, the identities 

^32 ^12 ^ ^22 1^1,3! 
1^2,3! 1^1,2! 1^1,21*1^2,31 (7.21) 

^22 ^32 ^121^2,31 (7,22) 

1^1,2! 1^1,3! 1^1,2! * 1^1,31 

may be used to reduce two of these coefficients. .Then the 1 

by 3 matrix can be written as 

Q S-pp 

= W ^ 2 \  '  1^2,3! ~ 1^1,2^ 

" [(^ïl^n (^12)n (^IS^n] (7.23) 

And, it is found that at time t^, y.^ is just a constant 

times where 

Thus, the 1 by 3 matrix can be written as 

Ks'n ' <7.25) 

Let the error-covariance matrix for "System a" be 

denoted by and the error-covariance matrix P^ for "System 

b" be denoted by P^. Then it is easy to show that P^ = P^. 
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This may be done by observing from 7.10 and 7.12, together 

with the relationship between and that implies 

= P^. Then, since cp^ = co^ and Equations 7.14 

implies that = P^+l* Consequently, by assuming that 

p*a a which is the most logical choice anyway,.It 

follows that 

Pn = Pn = fn (''.26) 

by mathematical induction. This result is what one would 

.expect since the two measured quantities, y^ and y.^, each 

contain a linear combination of the noises with known, 

nonzero coefficients; therefore, the Kalman filter associated 

with "System a" and the Kalman filter associated with "System 

b" ought to make equally good estimates of the noises. 

Since the "secondary observable" of "System a" is measured 

without error, e_(t ) is given by 

-e (t„) = [best estimate of ( r? : )] 
a n W , 2 \  

- (7.27) 
ri,2i 

where the "best estimate" referred to is assumed to be the 

best estimate of the indicated sum that the Kalman filter 

is capable of giving, assuming as the "observable". But 

it can be shown that for the independent state variables 

and Zg of the Kalman filter equations, the best estimate 

of the sum, (z^ + Zg), is just equal to the sum of the best 

estimates; i.e.. 
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(z^ + Zg) = + iZg (7.28) 

This result is most easily verified by recognizing that for 

the Kalman filter, equal to the mean 

of the conditional density function Since and 

Zg are independent and Gaussian, this conditional density 

function may be written as 

P(2nUn) = P((2l)nl%n)p((%2)nl%n) (7.29) 

where the two conditional density functions on the right-hand 

side are Gaussian with means of (z^)^ and respectively. 

One can then define a random variable w^ = (z^)^ + (zg)^, 

and the mean of the conditional density function P() will 

be + (zg)^. Then, if a Kalman filter were used to 

estimate w^, it would pick as its best estimate 9^, the mean 

of p(%IZn) ' Consequently, 

K = [Zl(tn) + Zgftn)] = ^l^^n^ + (7-30) 

which is the desired result. 

With the use of the above result. Equation 7.27 can be 

written 

-Ga/tn) = jA^ g| (&22(%1 ' ̂1^ " ̂ 12 ^^2" ̂ 2^) 

Squaring this and taking the mean yields 

®a^^n^ ^ \2 (B'22Pll(tn) ~ ^^12^22Pl2^^n^'^ ̂ 12P22^^n^ ̂ 
' 1J 2 I 91 \ 

^See for example Brown (4), pp. 25. 
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Similarly, the mean-square error associated with "System 

b" can be written as 

*§(^0) =1^ j2 ^^32^11^^n^ " ̂ ^12^32Pl3^^n^ + B^gPggftn)) 

(7.32) 

Notice that the result of Equation 7.26 has been employed to 

write the p^^'s of Equation 7.31 and the p^^'s of Equation 7.32 

as elements of the same matrix, P^, which can be calculated 

from either of the two systems.. 

The expression for can be calculated in terms of the 

elements of P* and (which will be denoted by p*^ and m^^, 

respectively, in the remaining equations) with the aid of 

Equations 7.10 and 7.12. Since P* is a symmetrical matrix, 

it can be, shown that the elements of Pn are given by 

°nPkq(tn) = "^li^lj^^kq^ij " ̂ ki^qj^ (7.33) 

l#k 

for k, q = 1, 2, 3, where 

s = X Jl 
Substituting the values of and p^g into Equation 7.31 

and collecting terms yields 

" < i ( 4 2  + - 7 ^  + (Pgpg - (PÎ2)') 
1^1,2I ri,2i 

+ ""II^W'PÎÎPSS - <PÎ3'^ + (PÉPis -(P?3'®' 
1^1,21 
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1^1,21 

+ + y7)(^Î3^É " PfsP^]) 
ri,2l 1^1,21 

- ^^^1*13*12 (P12P33 - P13P23) (7.35) 
ri,2l 

Similarly, substituting the values of p^^; and p^^ into 

Equation 7.32 and collecting similar terms yields 

«n?V = 4 (̂PÎÎPg - (Pg)') 

+ (1  ̂+ ITT + yp ̂I"I3><PÎ>33 -(PI3)') 
1^1,3! I 1,3! 1*1,3! 

+^{^(p>33- (p:3)') 

+ ( a i g m i i  +  3 - 2 2 ^ 1 3 )  ( P Î 1 P 2 3  -  P 1 2 P Î 3 )  
1^1,3' 

_ f!l2!^ (^*npg _ 

1^1,3' 

+ I2 (&12™11 "*" &32^Ï3)(Pl2P33 " PÎ3P23) (7.36) 
ri,3i 

where it is implied that the coefficients in both 7.35 and 

7.36 are evaluated at t^. By simply utilizing Equations 7.21, 
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7.22, and 7.23, where appropriate, it can be shown that 

el(tn) = (7.37) 

Thus the two "intuitive" systems under consideration are 

equally good for estimating s^(t^). 

There are four more possible "intuitive" systems for this 

example. Under similar assumptions about the sampling times, 

it could be shown by an appropriate change of subscripts 

that the mean-square error for each of these systems is the 

same as the mean-square error for the two systems considered 

above. Consequently, this example could be considered as a 

general proof, for the given Inputs, of the contention that 

all the possible "intuitive" systems are equally good. 

It is interesting to note that the proof for this 

discrete system was accomplished by direct comparison of the 

mean-square errors, rather than the Indirect approach that 

was used for continuous systems. Due to the matrix operations 

involved, it appears as though the extension of the above 

proof to the general n input line, m signal 

case would be very difficult at best. Consequently, proving 

the desired result first for continuous systems, then 

extending it to discrete systems appears to have been a 

work saving route. 
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VIII. SUMMARY 

The goal of this thesis was to show that, with suitable 

assumptions about the A matrix of the Input, A(t)_s(t) + 

n(t), and an appropriate linear, algebraic operator, an 

"intuitive" system having the general configuration shown 

in Figure 5 would give an optimum estimate of s^(t). The 

criterion chosen for the optimization was the minimum mean-

square error criterion, with the system allowed to operate on 

only a finite amount of past data and constrained to be 

linear, physically realizable, and distortionless. With the 

linear, algebraic operator chosen as shown in Figure 9, the 

"intuitive" system was shown to be an optimum system if the 

determinants of Equation 5.4 did not go to zero for any 

values of their arguments which were of Interest. 

Although the linear, algebraic operator of Figure 9 is 

not completely general, it is sufficiently general to 

demonstrate that the particular choice of the linear, 

algebraic operator is not Important. Consequently, it seems 

reasonable to extend the above result to the linear, algebraic 

operator of the general form shown In Figure 5- Sufficient 

conditions to insure that the "intuitive" system is then 

optimum would then appear to be that none of the input lines 

are given zero weight at any time due to the choice of the 

linear, algebraic operator and that the linear, algebraic 

operator is well defined at all values of time which are of 
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interest. With proper regard for these conditions, we get 

the useful result that all the "intuitive" systems are 

equally good. 

An attempt was made to show that the "intuitive" 

system was an optimum system for cases where one or the other 

of the determinants in 5.4 went to zero at a finite number of 

isolated points, but problems were encountered about the 

existence of a solution to the set of Integral equations 

describing the generalized (n-m)-dimensional Wiener filter. 

Under certain assumptions on the optimum weighting functions 

and the noises, the extension appeared to be valid, but the 

demonstration of this result took the form of "forcing" the 

"intuitive" solution to be optimum rather than showing the 

solution existed on its own merits. This is certainly one 

area in which more work could be done, providing the 

"intuitive" solution is of sufficient value for continuous 

systems to merit the extra work. 

As mentioned before, the results of this thesis are 

Interesting, but of limited practical value for continuous 

systems. This is because the set of Integral equations which 

describe the generalized Wiener filter associated with the 

"intuitive" system are just as difficult to solve as the 

set which describe the "optimum" system. 

The results should be extendable to discrete systems 

which are analogous to the continuous systems above. One 
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such discrete analog to the generalized, multidimensional 

Wiener filter is the Kalman filter, and therefore, if only 

discrete measurements of the inputs are to be used, it seems 

reasonable to replace the generalized Wiener filter by the 

Kalman filter in the "intuitive" system of Figure 5. 

Furthermore, for discrete systems, the sampling times can be 

chosen so that the determinants involved in the linear, alge

braic operator are nonzero. Consequently, no restrictions 

need be made on the noises except that they can be generated 

by the use of shaping filters with white-noise inputs. The 

practical advantages of extending the above theory to discrete 

problems are: 

1. It provides a convenient, optimum distortionless 

filter for the discrete problem. 

2. It insures that one need not concern himself with 

trying to pick a "best" linear, algebraic operator. Simply 

choose one (with proper regard for not weighting any of the 

lines by zero); the theory insures that it will be as good as 

any other. 

The first statement above is not meant to preclude 

the possibility of a direct derivation of an "optimum" 

distortionless filter for the discrete problem similar to 

what was done for continuous systems in Chapter III; it 

simply means that such a derivation is unnecessary. Of 

course, it is possible that the direct "optimum" system would 

offer computational advantages, and for this reason, such a 
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derivation is suggested as a topic for further study. 

It should be pointed out that it is really the distortion

less requirement and the nonadaptive assumption on the 

"optimum" system which permit the "intuitive" system to make 

as good an estimate of s^(t) as the "optimum" system. The 

second of these conditions limits the "optimum" system to 

making its estimate from the knowledge of the noises; the 

first forces it, in effect, to operate on (n-m) independent 

linear combinations of the noises, even though these noises 

are originally unmixed. 

Another Interesting topic for further study is suggested 

by considering the construction of an optimum, distortionless 

filter for estimating the signal s(t) from the available 

inputs shown in Figure 15(a), where s(t) = . The 

signal s(t) is assumed to be differentiable everywhere, and 

the two noises are assumed to be mutually independent, non-

stationary random functions. For the general linear system 

shown in Figure 15(b), the output can be written 

t 
x(t) = r y]_(t,u)[s(t-u) + n^(t-u)]du 

+^r + n2(t-u)]du 
dsft-u 
d( t-u 

(8 .1)  

The distortionless constraint requires that 

^ yi(t,u)s(t-u)du + / y2(t, u) _ s(t) = 0 

(8 .2 )  
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s(t) + n^(t) 

s(t) + n^{t) 

(a) The available Inputs 

>x(t) 

(b) The "optimum" distortionless filter 

s + n. 

+ "l " *2+ 8(0) 

^ 

<?r ^ S 

s + n. f^(t) 

y(t,u) 

(c) An "intuitive" system 

Figure 15. A simple example with related signals 
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Applying the usual calculus of variations to minimize the 

mean-square error under the constraint 8.2 yields the 

following two equations which, along with 8.2, define the 

optimum weighting functions y^(t,v) and ygft^v): 

t 
2 r y^(t,v)cp^(t-u, t-v)dv + xs(t-u) = 0 

for 0 < u < t 

2^ y2(t,v)cp2(t-u,t-v)dv + \ = 0 (8.3) 

These two equations can be reduced to one by differentiating 

the first with respect to u and adding the resulting equation 

to the second of Equations 8.3. This yields 

t _ t 
^ cp^(t-u,t-v)dv + ̂  y2(t,v)ç^(t-u,t-v)dv = 0 

(8.4) 

An "intuitive" system for estimating s(t) from the inputs 

of Figure 15(a) is shown in Figure 15(c). If the system is 

"turned on" at t = 0 with zero initial conditions, the output 

of the Integrator at time is given by 

t 

t 
= s(t) - s(0) + ̂ n2(u)du 

= s(t) - 8(0) + n^(t) (8.5) 

Assuming that s(o) is uncorrelated with both n^(t) and n^(t), 

the Integral equation which specifies the optlmuiii value of 

the weighting function y(t,v) can be written as 
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t • p r y(t,v)[cp, (t-u,t-v) + cpA(t-u,t-v) + s (0)]dv 
0 

-cp^(t-u,t) = 0 for 0 < u < t (8.6) 

Substituting the appropriate expression for the autocorrela

tion function of n^ into this expression yields 

t t-u t-v p 
^ y(t,v)[cp^(t-u,t-v) + ̂  ^ %^(x,z)dzdx + s (0)]dv 

-cp^(t-u,t) = 0 for 0 < u < t (8.7) 

The over-all weighting function from Input line 1 to the 

output of the "intuitive" system is given by 

y]_(t,v) = 6(v) - y(t,v) (8.8.) 

Letting f2(t) represent the second input, the output due to 

the second Input alone can be written as 

t t-u • 
^ y(t,u) ̂  f2(x)dx du 

t t-x 
= [ fg^x) ̂  y(t,u)dudx 

t v 
= ^ fg/t-v) ̂  y(t,u)dudv 

Prom this it is observed that the equivalent weighting 

function from input line 2 to the output is given by 

ygftfV) = ̂  y(t,u)du (8.9) 

To prove that the "intuitive" system is indeed an 

optimum system, it is sufficient to show that the over-all 

weighting functions of the "intuitive" system are a legitimate 
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solution to Equations 8.2 and 8.4. Substitution of Equations 

8.8 and 8.9 into 8.4 and Integration of the Dlrac delta 
function term yields 

t t V 
- ̂  y(t,v) "1^ cp^(t-u,t-v)dv + ̂  y(t,x)dx]cp2(t-u,t-v)dv 

+-|^ cp]^(t-u,t) = 0 (8.10) 

as one condition that y(t,v) must satisfy If the "intuitive" 

system Is to be an optimum one. That y(t,v) does Indeed 

satisfy Equation 8.10 can be shown by taking the partial 

derivative with respect to u of Equation 8 . 7 .  This yields 
t t-v 
^ y(t,v)C|^ cp3_(t-u,t-v) - ^ %^(t-u,z)dz]dv 

- cp^(t-u,t) = 0 (8.11) 

Comparison of Equations 8.10 and 8.11 shows that they are 

equivalent If 

t t-v t V 
^ y(t,v) ̂  %^(t-u,z)dzdv = J y(t,x)dx]cp2(t-u,t-v)dv 

(8.12) 

By replacing v by x and Interchanging the order of Integra

tion, the left-hand side of 8.12 can be written as 
t t-z 

I dxdz ^ J y(t,x)cp2(t-u,z)( 

Then, letting v = t - z, tiIs becomes 

t V 
^ y(t,x)dx]q^(t-u,t-v)dv 

which shows that 8.12 is an Identity. Consequently, it can 

be concluded that the solution y(t,v) to Equation 8.7 will 

satisfy Equation 8.10. 
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By inspection of Figure 15(c), it is noted that if the 

"Intuitive" system is to be distortionless, the weighting 

function y(t,v) must give zero weight to the constant s(0) 

which appears in its input (i.e., in the frequency domain, 

Y(t,w) must be zero at u) = 0). This also turns out to be 

the only requirement of y(t,v) that is necessary to satisfy 

the distortionless constraint, as can be demonstrated by 

substituting 8.8 and 8.9 into Equation 8.2. Furthermore, it 

is observed that the solution y(t,v) to Equation 8.7 will 

satisfy this requirement since Equation 8.7 must be true for 

arbitrary values of s(0). Thus, the over-all weighting 

functions of the "intuitive" system represent a valid solution 

to the Integral equations specifying the "optimum" distortion

less filter. 

There are many possible generalizations of the above 

example which appear to be worth investigating. For example, 

for the 2 Inputs in Figure 15(a), one might try replacing 

S(t) by L[s], where L is some general linear operator. Then 

the Integrator in Figure 15(c) would be replaced by the 

appropriate inverse operator of L, denoted by L~^. It is 

noted that the derivative operator is an example of such a 

linear operator, and happens to be one for which the inverse 

operator is not single-valued. Defining the Inverse 

operator to be the definite integral with limits 0 to t 

eliminated this problem but introduced the troublesome 
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Initial value s(0). The fact that. In the above example, 

the "Intuitive" system was an optimum distortionless system 

In spite of this difficulty Is encouraging. Consequently, 

one would expect a similar result for the situation where 

s(t) is replaced by L[s], at least for the "well-behaved" 

operators for which the operational products LL~^ and L"^L 

are the same. Note that the derivative operator and its 

inverse do not satisfy this requirement, so by this criterion 

are not "well-behaved". 

The next obvious step is to try to extend the above 

generalization to the multiple-input problem; that is, 

investigate the "intuitive" system for the case where the 

inputs are of the form shown in Figure 3 with each algebraic 

coefficient a^j(t) replaced by a linear operator operating 

on the signal Sj(t). 
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