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I. INTRODUCTION

A. Statement of the Problem

A problem sometimes encountered in systems work 1s that
of making an optimum estimate of a signal s(t) when two or
more independent sources, each of which is corrupted by noilse,
are avallable. If it is assumed that nothing is known a
priori about the signal and that the system used to estimate
it is nonadaptive, then no matter what optimization scheme 1s
used, 1t may not depend in any way on the nature of the signal
s(t).

As an example of this problem, suppose that we have
avallable the two independent sources or inputs s(t) + nl(t)
and s(t) + nz(t), where the noise functions nl(t) and nz(t)
are assumed to be time-stationary random functions with known
spectral density functlions. Any linear, constant parameter
system used to estimate s(t) from these inputs may be
represented by the system shown in Figure 1. A simple way
to avoid having s(t) appear in the optimization equatidhs is
to restrict ourselves to the class of systems which reproduce
s(t) exactly in the absence of noise. For the simple system
of Figure 1, this plaées the following constraint between

Y, and Y

o'
Y2(s) =1 - Yl(s) (1.1)

1

The expression for the output is then

X = Yl(s + Nl) + Y2(S + N2)



s(t) + nl(t) —_—] Yl(s) _..‘

s(t)'+ n,y(t) Y, (s) ——-J

Figure 1. Linear system used to estimate s(t)

s(t) + nl(t)

s(t) + ng(t)

./
(2)
s(t) + nl(t) + N s(t)+eb(tl>
) -
n,(t) - ny(t) “Th
1 2 Ji () l 1
S(t) + ng(t) B (b)

Figure 2. The two "intultive" systems for estimating

s(t)



=S + [lel + N2(1 - Yl)] (1.2)

With the error defined as the difference between x(t) and s(t),
it is observed that the quantity within the brackets of 1.2
is the transform of the error and that the choice of ¥, will
not affect the signal portion of the output. Furthermore, in
the complete absence of nolse, the output 1s exactly equal to
the.signal, as desired. Thus, we do not have to accept signal
diétortion as a consequence of smoothing the nolse. For this
reason we might refer to this as "distortionless" filteringl.

An alternate, and perhaps more intuitive, way of estima-
ting s(t) from the same inputs is shown in Figure 2(a).
Letting Ea(s) represent the Laplace transform of the error
assoclated with estimating s(t) for this system, the
expresslion for Ea is given by .
E, = - [N, - Np)Y, - Np]

= NyY, + No(1 - Y,) (1.3)

And, the over-all transfer functions between input line 1 and
the output and between input line 2 and the output are given
by Ya(sj and 1 - Ya(s), respectively. Comparing Equations 1.3
apd the error terms of 1.2, we see that merely specifying
the same optimization criterion for the two systems involved
will insure that Ya(s) = Yl(s). This in turn implies that

the systems of Figure .l and Figure 2(a) are equivalent, even

lsee for example Chapter 15 of Brown and Nilsson (5).
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though they mayvdiffer in thelr physical configuration.
Still another method of estimating s(t) is shown in
Figure 2(b). The expression for Eb(s) is given by
By, = - [(Nl—Ng)Yb - Ny

Nl(l-Yb) + NoYy (1.4)

Ey

The overall transfer functions between lines 1 and 2 and the
output are given by 1 - Yb(s) and Yb(s), respectively.

Using the same optimization criterion as before, it can be
shown that Yb(s) = Ye(s). Consequently, this system is
equivalent to both the system of Figure 1 and the system of
Figure 2(a).

In particular, if minimization of the mean-square error
is chosen as the optimization criterion, Ya(s) is the Wiener
filter assoclated with estimating n2(t) from the input
ny(t) - nl(t). Similarly, Yb(s) i1s the Wiener filter
associated with estimating nl(t) from the input nl(t) -
ng(t). The two systems of Figure 2 may then be thought of as
reducing the original prpblem, which involved an unspecified
signal in both the inputs and the output, to the more
familliar Wlener fillter problem,

The purpose of this thesls can be described, approximately,
as the extension of the above concepts to higher dimension.
To formalize the statement of the problem, consider thg
problem of estimating the signals sl(t),...,sm(t) from the

n avallable input lines shown in Figure 3. We will make the



f‘l(t) = all(t)sl(t) + ..+ alm(t)s (t) + nq(t)
£a(t) = 2, (£)s;(8) + ..o+ a (€)s () + np(¢)
fn(t) = anl(t)sl(t) + ...+ anm(t)sm(t) + nn(t)

Figure 3. The available input lines

assumption that nothing 1s known about

~slgnals sl(t),...,sm(t) and that nl(t),...,nn(t) are
nonstatlonary, random nolse inputs with known autocorrelation
functions. The nolses are assumed mutually lndependent.

It 1s also assumed that aij(t) for 1 =1, 2,...,n and J = 1,
2,...,m are known functions of time and that n > m,

Any system that might be used to estimate the slgnals
slkt),...,sm(t) may be represented by the n input, m output
"black box" of Figure 4. In thils thesis the filter shown is
constralned to be linear, physically realizablel; and
dlstortionless and 1s allowed to operate on only a finite
amount of past data. By physically realizable we mean
simply that 1t 1s not allowed to operate on any future data
in making the estimates for time t. The distortionless

constralnt requires that the system reproduce sl(t),...,

sp(t) exactly in the event that all the noilses are identically

lCausal is a more modern term for this.



£(t) —

- —%) (t)

fm(t) : “1 Filter

T —>8_ (t)
m

£a(t) —

Figure 4. Block diagram of the general multiple-input,
multiple-output filter for this problem

s1(t) + Ng(t)

52
fl(t) —> _(}K/ /Sl(t)
— — — N
Linear, N (t)‘ No(t)
algebraic 1! :
£ (t) 7 operator Generalized
m (n-m)-dimensional
. Wiener |
- filter
Np-m(t)
£ (t) —)

Figure 5. Block diagram of the "intultive" system
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zero. The desired filter is ﬁo be optimum in the sense

that it minimizes each of the mean-square errors associated
with estimating sl(t),...,sm(t). Since the errors are in
general nonstationary, the mean or averaging here 1s to be
taken in the ensemble sense. In particular the set of
integral equations for that part of the filter of Figure 4
which satisfies the above requirements and estimates sl(t)
1ls developed in Chapter III, The fllter specified by these
integral equations shall hereafter be referred to as the
"optimum" filter. If desired the integral equations for the
filter which estimates sk(t) may be found from the above
mentioned integral equations by an appropriate change of
subscripts, but for the purposes of the discussion in this
thesis it 1s sufficlent to talk about that part of the filter
which estimates Sl(t)’

An alternate system for estimating sl(t) from the inputs
shown in Figure 3 1s now suggested and is shown in block
diagram form in Figure 5. This system employs a linear,
algebralc operator having the n—m+i outputs shown in

n
Figure 5, where Ny(t) = ¥ cij(t)nj(t) for 1 = 0,1,...,n-m,
J=1

and each cij(t) is a known function of time. The filter
part of the system has as its n-m inputs the nonstatilonary,
random noises Nl(t),...,Nn_m(t) and 1s assumed to make a
minimum mean-square estimate of No(t). Thus the filter is

a generalized (n-m)-dimensional Wiener filter (see the next
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section fof what 1s meant by this term). This system shall
be referred to as the "intuitive' system.

The objective of the thesis 1s to show that under suitable
assumptions on the A matrix, where A = [aij(t)]’ i=1,...,n,
J=1,...,m, the "intuitive" system is an optimum system for
estimating sl(t). The assumptions on A amount to certain
conditions of linear independence on the rows of A and are
discussed later,

It 1s usually possible to choose the linear, algebraic
operator shown in Figure 5 in quite a number of different ways,
with the number of ways depending on the A matrix. To each
cholce of the linear, algebrailc oberator there c&rreSponds a
generalized (n-m)-dimensional Wiener filter. Since each of
these cholces constitutes a diffefent system, we see that
there are usually quite a number of possible "intuitive"
systems, If we can show that each of these represents an
optimum solution to the original problem, then 1t will follow
that all these "intuitive" systems have the same mean-square
error. Or, in other words, all the "intuitive" systems-are
equally good. This is an important result in its own right
and, as a matter of fact, 1s what motivated this thesis,

It 1s interesting to point out at this time that for
continuous operating systems the "intuitive" system does not
offer any real advantage over the "optimum" system. That

is, the set of integral equations that we get for the former



are Just as difficult to solve as the set we get for the
latter. The real advantage of the "intuitive" system is that
1t lends itself to the dilscrete analog of the multidimensional,
generalized Wiener filter, namely the Kalman filter, whereas
the problem 1n 1ts origlnal form does not lend 1tself to

this technique. Thls, of course, assumes that the noises are
such that they can be generated by the use of shaping filters
with white-noilse inputs., The Kalman filter is devised specl-
fically for a digital computer solutlon and has the advantage
of handling a multiple-input problem almost as simply as a
single-input problem, the only complexity added belng the
size of the matrices Involved. This technique 1s discussed
in Chapter 7 where a falrly general example with 2 signals

and 3 input lines 1s treated.

B. Review of Literature

Quite a number of books and articles have been written
on random processes In the years since World War II. The
basic filter of the type that 1s of interest here was firgt
developed by Wiener in 1942 and published in a classitied
report to Section D2, National Defense Research Committee.
It was later released for general use and published in a
book entitled "Extrapolation, Interpolation and.Smoothing of
Stationary Time Series" by Norbert Wiener (9). In this book,
Wiener treated only the case of time stationary inputs and

considered constant parameter, linear, infinite operating
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time filters,

The baslc type of fillter considered by Wiener was later

~generallzed in varyling degrees by several authors as to the

type of input(s) allowed and the constraints imposed on the
filter. A convenlent table of these generalizations is
presented on page 150 of Bendat (3). Of primary interest here
is the most general of these, namely the time varying para-
meter, linear, finlte operating time filter with nonstationary"
random nolse inputs. This case was first treated by Dolph
and Woodbury (6), but was also considered by Zadeh (11) and
Bendat (2)-.} It is interesting to note that there is not
ahy great difference in developing the integral equations for
the varlous cases, but that each new generalization brought
with 1t certain inherent difficulties in solving these
equations, Thils was the primary reason for treating the
various cases separately. For the purposes of this thesis,
all of the above types of .systems are referred to as "gener-
alized Wiener filters".

Other than containing the basic theory in one form or
another; most of the books and articles deal with topics
that are of interest only to certain phases of the problem
treated here and will be referred to throughout the thesis as

the need arises.
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II. A USEFUL RELATIONSHIP FOR AN n+l BY n MATRIX

In this chapter a relationship involving the deter-
minants of certain n by n and n-1 by n-1 submatrices of an
n+l by n matrix will be stated in the form of a theorem and
proven, This relationship will be very useful later in
reducing the form of the integral equations specifying the
filter for the "intuitive" system. Before proceeding to this
theoreﬁ, i1t is convenient to introduce some notation which

will be used throughout the remainder of this thesis,

A, Notation

Following the usual matrix notation, an upper case
letter will be used to represent a matrix (not necessarily
square) and the corresponding small letter with two subscripts
will denote one of its entries. Thus, aij is the entry in
the ith row and jth column of the matrix A. .

The determinant of the m by m matrix.formed by . selecting
TOWS il,...,im and columns Jl""’jm from matrix A will be

denoted by

Jl"",tjm

L

il,o'.,im

where il < i2 < oo < im and Jl < 32 < 400 < Jm' When the
integers 1,,...,1  are consecutive with 1 <k <m it will

be convenlent to use the notation
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Jl’...,‘jm
A
il’ o. (] o,im’im+1

exec. ik

to denote the determinant of the matrix made up of rows il,...,

k-17 Tke1’ ot m

notation will be extended to indlcate that two or more rows

i and columns jl,...,j of A. This

m

are 1eft_out or to indicate that one or more columns are
left out from a selectlon of consecutive rows or columns

of A, respectively.

B. Theorems 1 and 2
Theorem 1. Let B be an n+l by n matrix where n > 2 and p, 1,

and q be integers such that 1 < p <1 < q < n+l. Then,

2 o 1,...,0 2540050 1,...,n
IB - B + |B _ . ‘B

l,...,n+l l,...,n+1 l,...,n+l 1,...,0n+1

exc, 1,q exc., p rexe. p,i .exe, q
2y 0040 l,...,n

. —‘B . lB : =0

1;...,n+l l1,...,n+1 (2.1)
exc. p,q exc, 1

Proof: Define the matrix D in terms of the matrlix B as
follows:

row 1 of D =row p of B

rows 2,...,p of D = rows 1,...,p-1 of B, respectively’

rows p+l,...,q9-1 of D = rows p+l,...,q-1 of B, respectively

rOwWs q,...,n.of D = rows g+l1,...,n+1 of B, respectively

row n+l of D = row ¢ of B
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In terms of matrix D, Equation 2,1 18 true 1if

ZERS o 1,...,n 254005 1,...,n
lD . lD + D . ‘D
l,...,0n 2y400n+] 25000041 l,...,Nn
exe. 1 exe. 1
PZJS o 1,...,n
- ID . lD =0 (2.2)
2,...50 l,...,n+11"
exe., 1

Consequently, to prove 2.1 1t 1s sufficlent to prove statement
2.2, Expanding the determinants of the three n by n matrices
of 2.2 about column 1 ylelds

2,...5,0/n+1 ‘ P2 o}

D { 5 (-1)de1 'D }
1,...,nlLJ=2 254000+l
exc, 1 exc. J
2R o n 25400450

+ |p { v (-1)3*1g 1 \D }
2,...,n+l ,j=l J 1,-.n,n
exc., 1 exc. J
2,.¢u’n i—l ' 2,ooo,n

_ Ip { z (-1)9*a ID
2,-oo,n J=1 J 1,..-,n+1

exc, 1,
n+1 3 2,400
+ ("'l) dJl |D }= 0 (2.3)
J=1+1 1,...,0+1
exc., 1,

By simply collecting the coefficlents of djl such that the
left-hand side of 2.3 1is written as

n+1
coeffileclent of
le( o 0 djl)dJl

1t 1s found that the coefficlents of dqyqs dn+1,1 and d,, are
zero, Thils completes the proof of Theorem 1 for n = 2.

For n > 3, J included in the set of integers (2,...,n) and
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J # 1, the coefficient of djl is given by the left-hand side

of 2.4 below. Therefore, statement 2.3 is an equality if

2,00‘0’n 2’0.0,n 2,...,1’1 2,...,1’1
ND ‘D - ID +|D
254000+l 1,...,n 2540.,n+1 l,...,n
exc. 1 exc. J exc. J exc. 1
=S o 2,...50
PP ‘D = 0 (2.4)

=P ¢ 1,...,n+1

exc. J,1

where the minus sign 1s used 1f j < 1 and the plus sign is
‘used 1f J > 1. If statement 2.4 with the minus sign assumed
can be shown to be an equality for jJ < i, it will follow that
2.4 with the plus sign assumed 1s an equality for 1 < j by
simply interchanging i and j. ©Since column 1 of D does not
appear at all in 2.4, it is convenient to define a new n+l

by n-1 matrix A to be matrix D with column 1 deleted and to
state and prove the following theorem for matrix A. Note
that the proof of Tﬁeorem 2 wlll imply that 2.4 1s an equality,
which in turn wlll complete the proof of Theorem 1.

Theorem 2, Let A be an n+l by n-1 matrix (n > 3) and p and q

be integers such that 2 < q < p < n. Then

l,...,n-1 1l,...,n-1 1,...,n-1 1,...,0n-1
e e e e
2400 eyn+l l,...,5n 2y eeeyntl 1,...,n
exc. p ’ exc. q exc., q exc., p
1,...,0-1 l,...,0-1
- lA Sl lA =0 _ (2.5)
2,...50 l,...,n+1
exc. q,p

Proof: The proof of Theorem 2 1s accomplished by
mathematlical induction by first proving that 2.5 is an
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equality for n = 3 and n = 4, then expanding 2.5 by the

Laplace expansion for n > 5, and finally showlng that 2.5 is

true for n if 1t is true for n-2,

(1) Statement 2.5 can easily be shown to be true for

n = 3 by direct expansion, Notlce that p and q must be

chosen as 9 = 2, p = 3. In the interest of brevity, the

expansion 1s not shown here. But the concluslon 1is that for

any 4 by 2 matrix A,
_ I'A
2,3

1,2
2,4

1,2
1,3

1,2
A
3,4

17

1,2

, 1,2
1,4

=0 (2.6)

(2) For n = 4, we can agaln prove statement 2.5 by

direct expansion, We choose to expand each determinant of -

the 3 by 3 matrices in 2.5 along the 1th row, where 1 # 1,

Q, p, 5. For example, 1f we choose q = 2 and p = 4, then

1 = 3, and the left-hand side of 2.5 becomes

1,2 2,3

+a33'A2,5 )(a31 A1,4

2,3

2,5

2,3 1,3
~(a3) Ay 5|-235 Ay 5
2,3 1,3

-(ay, |A -a,, A
3L1oal 3202,y

1,3
—a32'A2,5

(a31!A
1,2 2,3
ta3g fA4,5 )23y |40

1,2 2,3

+a Y(a,, |A
33’ 2,4l 3 1,5

-a

-a

-a

32
32

32

A

A

1

A1,3 ’ l,Eb
+a A
1,40 330 1,4

1,3 1,2
1,2| t233 1,2 )
1,3 l 1,2i)
+a, A
1,50 3115
(2.7)

After multiplylng and collectling terms, the coefflclents

2

of a3y a2

2
32 and a33

therefore zero, The coeffliclent of a31a32 1s

are all of the form of 2.6 and are



16

2,3 1,3 2,3 1,3 2,3 1,3
- lA - |A - |A ']A + |A -IA
2,5 1,4 1,4 2,5 4,5 1,2
2,3 1,3 2,3 1,3 2,3 1,3
+ [A . (A + |A -,A + (A -'A (2.8)
112 4)5 2’4 1:5 1)5 2)4

Notice that row 3 of A does not appear in 2.8; therefore, it

is convenient to define a 4 by 3 matrix E which 1s made up

of rows 1, 2, 4, and 5 of A. In terms of matrix E, 2.8 can be

written
a,b c,d a,b c,d a,b c,d
- |BE o |E - |E B + E - E
2,4 1,3 1,3 2,4 3,4 1,2
a,b c,d| a,b c,d a,b c,d
+ |E - B + |E | E + |E «|E
1,2 3,4 2,3 1,4 1,4 2,3 (2.9)

where a = 2, b,d = 3, and ¢ = 1.

The coefficient of a is given by the negative of the

3133
quantity in 2.9 with a,d = 2, b = 3, and ¢ = 1 and the
coefficient of a32a33 1s given by 2,9 with a,c =1, b = 3,
and d = 2. |

In all three of the above cases it 1s easy to show by :
direct expansion that 2.9 1s equal to éero. In fact, if it
is assumed that a, b, ¢, and d must include all three
-integers 1, 2, and 3 among them, then the three cases above
exnaust the possible'selections for a, b, ¢, and d which make
2.9 different. Therefore, under the above assumptions, the

"quantity 1n 2.9 is ldentically zero. Thils relationship aﬁong

the determinants of certain 2 by 2 submatrices of any 4 by 3
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matrix will be useful again 1n the next section where we
treat statement 2.5 for n > 5,

(3) For n > 5, the general procedure 1s to expand each
of the determinants in 2.5 by the Laplace expansion.
According to the Laplace expansionl, the determinant of any
n by n square matrix A can be expanded along the m rows

i .oyl _as

1°° m
AJl""JJm

i B

£(-1)°

Al

[

m im+1"¢.’i

1’ n

where (1) s = 1,4 cee + 1+ J7 4 oon +

J § o o 0 j
LN ’ m{that can
il’ooo,im

be formed by choosing all possible combinations of

(2) w = the (;) minors of the form \A

m columns from n columns
(3) The indices in each of the four sets (il,...,im),
(195 0os1y)s (Iyseeesdy)s and (Jpqseeesdy)
are arranged in order of increasing magnitude.
In order to simplify the notation of 2.5 somewhat,
definevan n+1byn-1matrix A' which is formed from A
as follows: ) '

row 1 of A! row 1 of A

il

row 2 of A!

row q of A

rows 3,..., qQ of A' = rows 2,...,9-1 of A, respectively

lsee ror example Ayres (1, p. 33).
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rows q+l,...,p-1 of A'=rows q+l,...,p-1 of A, respectively

rOW D,...,n-1 of A' = rows p+l,...,n of A, respectively
row n of A' = row p of A |
row n+l of A' = row n+l of A

Then replace A' by A. In terms of this new matrix A,

Equation 2.5 is true if

1,...,1’1-1 l’u'-,n—l 1,...,1’1-1 1’0 ’n—ll
; el B
2y.005n-1,n+1 1,3,...,0n 35 ¢eesn+l 1,...,n-1
l’non’n-l l’uvn’n-l
- ‘A ’ -IA =0 (2.10)
25,0050 1,3,.¢.,n-1,n+1

Thus, to prove statement 2.5, it is sufficlent to prove
statement 2.10,

Inspection of 2.10 shows that rows 3,...,n-1 are common
to all of the matrices involved. This suggests that eéch of
the determinants in 2.10 be expanded about rows 3,...,n-1 by

the Laplace expansion. For example,
exc. 31,32
l,--.,n-l 1,-ou,n-l
A ]
2,...,n-1,n+1

Jqysd
A 1’Y2
2,n+1

3,-..,1‘1‘1

Where (1) S = 3 + L 2 ] + (n"l) + 1 + .u-.+ (1’1-‘1) - jl—jg
or s =2+ (ntl) + J; + J,
1 exc. JyisJo
(2) w = the (3:3) minors |Alsc+ 01} thot can be
3,...,1’1—1

formed by choosing all possible combinations of

n-3 columns from n-1 columns.
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Making a simllar expansion for each of the other
determinants, and at the same time writing each product of

sums as a double summation, the left-hand side of 2,10 becomes

exc, Jl,j2 exc, kl,k2
S, +8 1,.-.,n"'1 1’cco,n—1 ‘ j ,.j k k
sz (-1)°17%2), ,'A ’ _’A 12J2 _!A 14 2!
W1W2 3,u-o’n"'l 3,...,n-1 2,n+l | 1,1’1
exc. 31,32 exc, kl’k2
S +s 1,' ’n—'l 1,eooyn_1 ,j .’J k ’k
gz (-1) 3 Ya .‘A a2 .IA 1 2‘
W1W2 3,-.o,n"'l 3,ooc’n_1 l’l,I'H'l 1,2
exc, 31,32 exc. kl,k2
S-+8S 1,...,1’1-‘1 l_’ou.,n—l J ,J k ’k
oy (-1)576], ! _’A ’ R ,‘A 1:ko
W1W2 3,...,1’1—1 3,.-._’n"1 2,1'1 1,n+1
where (1) 8, + 85, =2 + (n+1) + Jy +dp + 1m0+ ky + ky
=2n + 4+ + I, + Kk + Ky
83+ 5y =n+ (n+l) + Jp + Jo + 1 + 2+ kg + k,

2n + 4+ Jp + Jo + k) + kg

S5+ Sg=2+n+ g+ + 1+ (n+1) + ky + k,

2n + 4+ J + Jo + ky + ko
(2) wy and w, are defined the same as w was defined
above.
Factoring out the quantities that are common to allAthree

double summations this can be written

exc. jl,jg exc, kl,k2
J +J +k +k 1,...,1’1-1 l,uoo’n_l
gy (-1)°t 212y .l :
w1W2 3,ooo,n—l 3’eco’n-1 (2.11)
lAjl’Je .tAkl’kei_ 192 _lAkl’kei_ J1dg) Akl’keﬁ,
2,n+1 1l,n n,n+1 1,2 2,n 1,n+1
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Note that w (and consequently wq and w2) can also be

exc. Jl,J2

n"l 1,...,1’1—1

thought of as being the ( 5 ) minors lA ’that can

3540.5n-1
be formed by selecting all posslble combinations of two
columns, namely Jl and 32, to be excluded from n-1 columns,
and in fact, it 1s more convenient to think of w in this way.
With this in mind, let us take a closer look at the terms in
2.11,

Some of the terms in the double summation have the pair
(31,32) equal to the pair (kl’kz)’ For each of these terms
the quantity within the braces in 2.11 involves only four rows
and two col@mns, namely rows 1, 2, n, and n+l and columns Jl
and 32. Comparison with Equation 2.6 shows that the quantity
within the braces in 2.11 is zero for each_term of this type.

For the terms remaining in 2.11, the pair (31’52) is not
equal to the pair (kl’kg) which means that all of these terms
fall into one of two categories. For one of these categories,
call it vy, the set (jl’Jz’kl’ke) will contain exactly three
different integers; the other category, call it Vos will have
exactly four different integers 1n the set (Jl’je’kl’kQ)'
Furthermore the double summation of 2.1l can be replaced by a
single summation by noting that the quantity outside the braces

in 2.11 is the same for (jl,J2) = (a,b) and (kl,k = (c,d)

o)
as 1t 1s for (31532) = (¢,d) and (kl,k2) = (a,b) and choosing

the new summation properly. In view of the above, the terms
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remaining in 2.11 can be represented by
exc. 31,32 exc. k.,k

1’72
J +J +k +k 1,..-,n-1 1 s v e n—l
(-1)"t e Q’A HA’ ’ )
V1+V2 3’ooo’n"1 3,...,1’1-1‘
Jvsd k.,k Jqsd k.,k Jqsd “k.,k
{Arz wszl Al’zwArzkwl’ﬂJAve
2,n+1 1,n n,n+1l 1,2 2,n [ 1,n+1
X, ,k Jysd k,,k Jqysd k,,k Jqisd
MR- ,‘A 1292 ke .‘A 1 2‘_IA 1Ko ./A 1 2}
2,n+1 1,n n,n+l 1,2 2,n 1,n+l
. 2.
-1y (n=3) (2)+8(n-3), (2.12)
2 2
where (1) v, = the . products of the
exc. Ji,Jp exc. kp,ko
’ 1,.oo,n_1 1,...,1’1—1
minors <A : l- 'A l that can be -
3,;..,1’1"1 3’ooo,n—1
formed by choosing two groups of 2 columns each
from n-1 columns, the order of the groups being
indistinguishable and either k; = (Jl or j,) or
ko = (j; or j,), but not both
1 2
(P51 (°53)
(2) v, = the —2 52— products of the minors
exc. J1,32 - exe, kl,ké

1,...,n-1 1,...,0-1 |
IA . IA ’that can be formed by

3,coc,n'—1 3,...,1’1-1

choosing two groups of 2 columns each from n-1
columns; the-order of the groups being indis-

tinguishable and J,, Jo, k;, and k, being 4

2
distinct integers.,
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For eadh'term that falls into category Vi the quantity
within the braces in 2.12 involves the detérminants of
certain 2 by 2 submatrices of a 4 by 3 matrix. By making a
sultable association between the matrix E of 2.9 and the
rows and coiumns of A that are present in the quantity within
the braces of 2.12, i1t 1s possible to conclude from 2.9 and
" the discussion which follows 1t that the quantity wilthin the
braces of 2.12 is identically zero for this case. Thus the
summation over vy contributes nothing, aﬁd 2.12 can be
written as just the summation over Voo

It is convenient at this polnt to symbolize the quantity
within the braces in 2.12 by

{(Jys o5 Xqs ky)d

to save some writing. Then 2.12 can be written as
exc, Jl,j2 exc, kl’ké

Jitdotkytko ¢l 1,...,n-1 1,...,n-1
z(-1) 1792 {JAS, o -lA3’...,n_1 (335 35 s p))
exc. Jqskq exc. Josk,
Jyeeesn=1 l,...,n-1
" A3:---:n-1 . A3,...,1’1—1 {(31’ Ky ; 32,_k2)}

exc, ,jl,k2 exc, 32,k1

1,...,n-1 1,...,n-1

+ A3,...,n-l ) A3,...,n—1 {(Jl’ k2; 32’ kl)}} ' (2.13)

where z = the (nal) possible combinations of 4 different

columns, call them columns Jl’ 32, kl, and kz, from n-1

columns,
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If it 1s assumed that J; < J, < k; < k,, as 1s now '
perfectly permiésible, than it can be shown by direct expansion
that

{(J]_’ k13 329 kz)} = = {(Jl’ 325 kl’ ke)}

{(Jla k23 32: kl)} = + {(‘jl’ Jgi kl’ k2)}

Substituting 2.14 into 2.13 the latter can be written as
exc, 31,32 exce. kl,k2

( )Jl+32+k 1Ko t( )}{' l1,...,n-1 I ' l,...,n-1 l
Zi-1 Jisdnask,,k A * (A
z 17v2""1% "2 35e00,n-1 35,.0.,5n-1

(2.14)

exc. Jl,kl exc. j2,k2 exc. Jl’k2 exc. 32,
1,...’n—1 1,oo~’n-l l,ooo,n-l ,o.a’n“
‘A A . A }-
3_’---’n"1 .oo,n 1

(2.15)"
Let B be defined as the n-1 by n-3 matrix formed by

+

|a
3,0.:,n"'1 3,...,1'1"1

1’n.o’n-l
» then interchanging
3,...,1‘1—1 )

taking the transpose of {A
TOWS ji and 1 and rows keland n-1, Since the determinant of
the transpose of a matrix is equal to the determinant of the
matrix itself, the quantity within the braces in 2.15 1s equal

to zero if

l l,...,m-1 l 1,...,m—1| l,...,m-1 1,...,m~1
B B : —lB ',B ‘
25 00.,mtl lye..,m 2y 00.ymt+l l,...,m
exc, j2 exc, kl exc. kl exc. J2
l,...,m-l 1,.--,m"1'
+|B . |B =0 (2.16)
25 000,m l,...,m+l

exc. 32,k1
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where n > 5, m = n-2 and 2 < 32 < kl < m.

Equation 2,16 is just the negative of Equafion 2.5 with
n replaced by m (m = n-2), q replaced by Jos and p replaced
by kl. It 1is also noted by the order of the above arguments
that statement 2.5 is true if statement 2,16 1s ture; that
1s, Equation 2.5 is true for n (n > 5) if it is true for n-2,
Since 2.5 has already been proved for n = 3 and n = 4, the
. concluslion is reached by the princlple of mathematical
~induction that 2.5 18 true for all n > 3. This completes
the proof of Theorem 2 which 1in turn completes the proof of
Theorem 1. Theorem 1 1s very useful in the work that

follows,
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fII; THE OPTIMUM LINEAR DISTORTIONLESS FILTER

A.‘ Comments on Finlte Operating Time Filters
It 1s assumed that the reader has a basic understanding
of the weighting function concept. However, since there are
differences in notation among the various authors, a few
comments about the notation used in this thesis and about
finite operating time filters seem appropriate.

Consider the simple system shown in Figure 6 with input

x(t) — w(t,v)——m— y(t)

Figure 6. System illustrating weighting function

x(t), output y(t) and weighting function w(t,v). In this
thesis the weighting function w(t,v) 1s defined as the output
of the system shown in Figure 6 at time t due to a unit
impulse applied at the input (with the switch closed, of
course) at time t-v. The variable t is usually called the
"running time variable" and v the "age variable'.

If the system of.Figure 6 possesses zéfo initial
conditions and the switch is closed at t = O, the output

at time t can be written as

t
y(t) = £ w(t,v)x(t—v)dv | (3.1)

This system 1s a finlte operating time filter since it weights
only a filnite amount of the past input. However, note that

the interval over which the input 1s weighted increases as
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time goes on.

An alternate flnite operating time filter 1s one in which
the interval over which the input is weighted has a constant
length T, In thls case it 1s still convenient to think of
the switch beihg closed at t = 0 and, providing t > T, the

output at time t i1s-given by

T
y(t) = g w(t,v)x(t-v)dv (3.2)

The corresponding equatlon for an infinlte operating
time filter can be obtained from 3.2 by simply letting T-w,

_ Ir x(t) and y(t).are known functions of time, then 3.1,
3.2, and 3.3 are integral equations which specify their
respective weighting functions., Notice that the problem of
3.1 1s truly nonstationary in character; that is, the
welghting function depends intrinsically upon t and v qnd
a different solution w(t,v) is required for each t considered.

The sltuation 1s a little different in 3.2 where the -
weighting function depends not only on the variables t and v
but also on the parameter T, With x(t) and y(t) given it is
usually necessary to fix our attention on a specific value of
time, say t = t;, to solve the integral equation. By making
the change of variable t' =t - (tl-T), Equation 3.2 can be
written as

T
y(t'+t1—T) = £ w(t'+t-T,v)x(t'+t,-T-v)dv ‘

and specifylng t = tl in 3.2 corresponds to specifying t'=T
in the above equation. Finally by defining
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xl(t')
yq(t)
Cwp(E,v) = w(tr+t

x(t'+t1-T)

y(t'+t -T)
1—T,V)

Equation 3.2 evaluated at t = t1 becomes
T
y,(T) = g wo (T, v)x, (T-v)dv (3.3)

Consequently it 1s perfectly general to replace Equation 3.2
by Equation 3.3, but we should keep in mind that if we fix
our attention on a different instant of time t we will in
general get a different weighting function since Xy and ¥
will in general be different. It is worth noting that since
T is a constant in wl(T,v) above, T 1s more. properly thought
of as a parameter rather than a variable as the notation
indicates; however, Equation 3.3 is left as it 1s because of
its close relationship to 3.1,

In summary, from the preceding discussion and comparison
of Equations 3.3 and 3.1, we can concludé that the integral
equation for the type of fllter represented by 3.2 can be
obtained from the integral Equation 3.1 by Simply fixing our
attention on a fixed time instant t and identifying t with T,
Therefore, the integral equations in the following sections
will be developed for systems of the type characterlzed by
Equation 3.1.
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B. Derivation of the Integral Equations

In this section the 1ntegral equations are developed for
the filter which optimizes the estimate of sl(t) from the
.avallable input 1lines shown 1in Figure 3. The criterion for
optimization 18 the minimum mean-square error criterion.
As stated below Figure 4, the filter is constrained to be
lineaf,'physically realizable, and distortionless. In
addition, it is allowed, in general, to operate on only a
finite amount of past data. There 1s one further assumption
which 1s implicit in the development that.follows, namely
that the fllter is not adaptive. In other words, the fiiter
will not make use of the knowledge gained about sl(t) during
the course of 1ts operation to make a further improvement in
itself. Thils 1s a subtle but important polnt and more will
be said of it later. |

Since the filter 1s constrained to be linear 1t may be
represented by Figure 7 where fi(t) is the input signal on
line 1 and wi(t,v) is thé‘wéighting functign from line 1 to

the output. Comparison of Figure 3 and Figure 7 shows that

£y(t) = a;q(£)sq(t) + ..o + 2y (t)s (£) + ny(t)  (3.4)

The constraint of physical realizability implies that
wi(t,v) =0 for v < O and each 1 = ;,...,n.

In view of the discussion in thé preceeding section, the
finite operating time filter 1s initially chosen to be the

type discussed in connection with Equation 3.1 and can later
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fl(t) ‘—'“awl(t,v)

——————— AN

AN
N x(t) = s, (t) + e(t)

£, (t) —3w, (t,v) )é ) 1 >
1 1 //+J

_______ /
'f‘n(t)' —*%wn(t,v)

Figure 7. The general n-input, single output linear filter
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be extended to another type 1f the need arises. Then the
output x(t) is gilven by
n t
x(t) = = [ w(t,v)f (t-v)av (3.5)
1=1 _ :

0
The distortlionless constraint 1s deflned to mean that

1(t) in the event that

‘all of the noises are ldentically zero. Using 3.5 together

the output at time t 1s identilcally s

with 3.1 this constraint impllies that

G(t) = 2 f wy (t v)[ z aij(t—v)sj(t—v)]dv - 5,(t) =0 (3.6)
1=1 =1 .
"where G(t) 1s defined as shown for later use;
By inspection of Figure 7 the error, e(t), associéted
with the estimate of Sl<t) 1s given by
e(t) = x(t) - s, (t)
Using Equation 3.5 for x(t), along with 3.4 and 3.6, the

expression for the error reduces to

i 1 g (t v) (t-v)dv

Squaring thls expresslon for the error, writing the product
of the two summatlons as a double sum and the product of two
integrals as a double Integral, and finally taklng the

ensemble average glves

2 (t) 2 z f f

E(t) = e°(t) = (t u)wJ(t v)n, (t- u)n (t-v)dudv
1=1 j=1"0"0

where E(t) 1s defined as the mean-~square error for notational

convenlence, Since the nolses are assumed to be mutually
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independent,
oy (t-u,t-v) 1f 1 =

ni(t-u)nj(t-V) = {jo oy (3.7)

where mi(tl,tg) is defined as the autocorrelation function of

the nonstationary noise n,(t), 1.e.

wi(tlitz) = ni(tl)ni(tQ) (3o8)
Utilizing 3.7 the expression for the mean-square error reduces
to

E(t) = 1§1 fszwi(t,u)wi(t,v)mi(t-u,t-v>dudv -(3.9)

The problem of finding the weighting functions wy(t,v),
...,wﬁ(t,v) which will minimize the mean-square error subject
to the conditions imposed on the filter thus reduces to
minimizing E(t) subject to the constraint that G(t) = 0. This
type of problem can be handled readlily by using the Lagrange
multiplier technique. To employ this technique note that E(t)

and G(t) are reallyffunctions of wl(t,v),...,wn(t,v); il.e.,

]

E(t) E(wl,...,wn)
G(t) = G(wl,...,wn)

Then according to the Lagrange multiplier techniquel, in

(3.10)

order that E attain an extreme value under the condition that
G = 0 at a point (wi,...,w{), it is necessary that there be a

number A such that

lsee for example Fulks (7), pp. 266,
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aE(W ’uoo,w ) aG(W ’ooa’w ) ’
1 n 1 n _ _ :
awi + A aWi =0 for 1 = 1,...,1’1
W’)l(-,c.o’w.§=o w{’n .,WP;=O
and G(WT,...,WK) = 0 (3.11)

Following the usual procedure of calculus of variétions,
;wi(t,v) is replaced by WI(t,v) + eini(t,v)‘for each 1 = 1,...,n
in Equatlon 3.11. Here, €4 is an arbitrarily small parameter
and ni(t,v) i1s an arbitrary perturbation for O < v < t. Then

3.11 can be replaced by

-g—Eé—j-- +A-——-—-—g(§ =O fOPi=1,...,n
' 1

cl,...,en=0 el,..,,en=0 (3.12)
and G(wf,...,w;) =0

where the arguments of E and G are left out to save writing.
The equivalence of Equatlons 3.11 and 3.12 can be shown by
expanding E and G in a Taylor series about the point (w{,...,
) | |
Substlituting the expressions for E and G glven by 3.9
"and 3.6, respectively, into the first of Equations 3.12,
performing the indicated differentiation,.and using the fact

that @i(tl,te) = wi(tg,tl) yields

t t
gﬂi(t:u) {2 g W{(t,v)wi(t-u,t-v)dv
m,
+ A leaij(t—u)sj(t-u)} du = 0

Since n(t,u) is an arbitrary perturbation for 0. < u < t, the

above equation can be satisfied only 1f the quantity within
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the braces vanlshes. Therefore,

. . .
2 g wi(t,v)oy (t-u,t-v)dv + szlaij(t-u)sj(t—u) =0 (3.13)

for 0 <u < t and each 1 = 1,...,n.

The second of Equations 3.12 is simply Equation 3.6 with .
wi(t,v) replaced by w;(t,v); If the éggumption‘is made that
the weilghting functions wf(t,v), i=1,...,n, do not depend .. ,t
on the signals sj(t), J=1,...,m (i.e., the filter is not
adaptive), then this one equation implies the m conditions

given by
' ' s(v) for j =1

n
iElaij(t-v)wi*(t,v) = . (3.14)
T 0 for j=2,...,m

where §(v) is the Dirac delta function.

The set of n equatlons represented by 3.13 together with
the set of m equations represented by 3.14 are the necessary
conditions that wf(t,v),...,wﬁ(t,v) must sétisfy for the
mean-square error to be a minimum. These‘éonditions are also

sufficient if
2

Q
=

>0 for each 1 = 1,...,n

o€

e )

81, ...,€n=0
The detalls of taking the second derivative indicated above

are not shown here but the result is

82

aei

=

Tt ot
= 2 fofoni(u)ni(v)wi(t-u,t~v)dudv

el,...,en=0 .
=2 [tg ny (w)n, (t-u)dul® > o
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for each 1 = l,...,n, which ensures that a minimum point has
been achieved since the square 1s always positive,

Equations 3.13 and 3.14 together make up a set of min
equations in the n+l inknowns wf(t,v),...,wa(t,v), and A
Which can be solved simultaneously for these unknowns.
'Indeedj3;14 represents a set of m{equatidns in n unknowns and

can be wrltten in matrix notation as

[A(t-v) 1T [wd(t,v)] = [o(v) (3.15)
w;(t,v) 0 '
Lwﬁ(t’V)J"-L 0 J

where A(t) is the n by m coefficignt matrix with elements
aij(t)’ and [A(t)]T 1s the transpose of A(t). Consequently,
Equation 3.15 may be used to solve for m of the optimum
welghting functions in terms of the other n-m welghting
functions whenever A(t-v) has ﬁ rows such that the deter-
minant of'the‘m'by m submatfix'consisting of these m rows‘»
18 nonzero for all values of v in the interval (0 < v < t)
and all values of t‘of interest, Let us assume that A

possesses m such rows and furthermore that these are rows

1,...,m; that is,
l,...,m :

A (t-v)] # O for all v such that 0 < v < t (3.16)
1’aoo,m

Under this assumption, 1t i1s possible to solve for wf(t,v),

cees w%(t,v) in terms of w§+l(t,v),...,w§(t,v). From either
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3.14 or 3.15, one can write

l,...,m T, ‘ N B n )
[A (t--v)] w(e,v)| = [slv)- 3 ay (t-v)wr(e,v)
l)oo-,m . J= +1
(£,v) T & (t-v)ur(t,v)
wX(t,v - ¥ a t-v)w*(t,v
2 ,j=m'+1’-32 3
L] n .
* - - *
_Wm(t’v)d . i J:r%—}-la'jm(t V)W‘j(?,V)J

Using Cramers Rule, the fact that the determlinant of a matrix
transposed 18 equal to the determlnant of the matrix 1tself,

and finally that

exe, k
m l,o-.’m 1,¢o¢’m .
5 (0% |30 )| = )" [ (e-v)| (3.27)
k=1 1,-..,m ,...,m,

exe, 1 exe, 1

“for J included in the set of integers (m+l,...,n), the ekpres—

sion for wf(t,v) reduces to

2,0.-,m
wi(t,v) = — 0 (-1 s(v) |a (t-v)
A (t-V) é;{...im
l,...,m ¢-
n l,...,m
-t s (e-)| wite, )1 (3.18)
j=m+1 1,.co,mpj '
exe, 1

for 1 = l,oo',mv
The set of n equatlons represented by 3.13 can be

written in matrix notation as
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t
ALA(E~u)] %l(t-u)' = [-2 f w{(t,v)wl(thu,t—v)dv'
O .

sp(t-w)|  |-2 gtwg(t;v)@n(t-u,t-v)va
which can be thought of as a set of n eqﬁations in the m

unknown xsl;...,xsm. Because of the assumption 3,16, the
fiféf m of the above equations can be used to solve for xal,
.;.,XSm by using Cramer's Rule, The result is

exc. 1
1 m 1,...,m
As (t-u) = T——— { £ (-2)(-1)***]a (t-u) *
. A 3 sy (t_u) k:l 1’,..’1’“
l,...,m exc. k
t
g w¥(t,v)g (t-u,t-v)av} (3.19)

for 1 =1,...,mand 0 < u < t.
Equation 3.19 can now be substituted into the remaining
n:m,equations of 3.13. If Equation 3.18 1s then used to

eliminate wf(t,v),...,w;(t,v), the result is

t
£ w;(t,v)wi(t—u,t-v)dv

1 : m m J4k+1
t-' - .
AN T, om { Elaij( u){kgl( 1)
A (t-u)l - |A (t-v) '
3 . o,m l,ooo’m
exc. j , .
l,...,m t IS i}
]A U e-w) [ -1kt ]A U eev) s(v)
l1,...,m 0] lyeeoeym '
exc.k exc, k
n 1,.-.,m :
- (k1) s A U (=) WA (t,v) Ty (t-u, t-v) Jav])
. p=nl+l 1,.on’m’p ’
» " exec., k

=0
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for 0 <u <t and each 1 = mt+l,...,n. The integration which
includes §(v) may then be carried out using the sifting
préperty of the Dirac delta function. Then by using Equation
3.17 and freely interchanging the order of integration and
summation the above equétion can be put in the form

t A
g wi(t,v)wi(t—u,t—v)dv -

n t ( ) 1
+ 3 wX¥(t,v .
J=mu+l J 1,...,m(t_u) -lAl,...’m(t-v) _
l)""m . 1,..-,m
m l,oao,m‘ 1):..3m
{ v |A (t-u)| - |A o (t-v) wk(t-u,t-v)}dv
k=11 1,...,m,1 1,000,m,]
‘ exc. k exc., k
1,'-.,m 2,--0_’m
A (t-u)| + |A (t)’
m l’cbo’m’i 1’ .O,m
+ (_1)m 5 ixc. k ixc. k o (t-u,t) = O
=l ,nao,m k] m k
l,...,m l,...,m *

for 0 <u <t and each 1 = m+l,...,n. Notice that 3.20 1s

a set of n-m eqﬁations which together determine w;+1(t,v),...,
wﬁ(t,v). Once thls set of equations is solved, the remaining
m weighting functions are given by 3.18. This completes the
derivafion of the integral equations for the "optimum"

filter.
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IV. THE INTUITIVE FILTER

The purpose of this chapter 1s to investigate the
"intuitive" system. A form of the "linear, algebralc operator"
referred to in the introduction will be constructed which will
be fairly general yet specilfic enough to be handled without
great notational difficulty. The integral equations for the
generalized (n-m)-dimensional Wiener filter associated with
this linear, algebralc operator will then be given. But
before proceeding to this problem, it 1s convenient to develop
the Integral equatlons for the generalized r-dimensional

Wiener filter for the type of input that will be of interest

" here.

A, Generalized r-Dimensional Wiener Filter

Conslder the prob}em of finding the welghting functilons
yl(t;v),...,yr(t,v) which will minimize the mean-square error
assoclated with estimating No(t) in Figure 8. The weight-
ing functions are assumed to be physically realizable and the
system 1s "turned on" at time t = O with zero initial condi-
tions. The nonstationary, random input noises ni(t), 1i=1,
.oy, are mutually independent With known autocorrelation

functlions; that is,

It
e

, mi(tl,tg) for i
ni(tl)nj(tz) =4{ ' (4.1)
0 for 1 # ]
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N.(t) - N,(t)
0 1 yl(t,V)
____________ N
N+
Ny(t) - Né(t) yj(t,v) 4>§> x(t) = No(t) + e(t)>
/ /+
Wt 2% v

Figure 8. The "generalized r-dimensional Wiener filter"
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It 1s also assumed that the r availlable input lines are of the

form shown in Figure 8 where

Ni(t) = J%lcij(t)nj(t) (4.2)

and cij(t) is a known function of time (possibly zero) for
each 1 =0, 1,...,rand J = 1,...,n,

With the above given information and the error e(t)
defined as the difference between the output and Nj (t), the

error can be written as
r t
e(t) = 1§1 g yi(t,v)[NO(t-v) - Ni(t-v)]dv - No(t)

After squaring the expression for e(t), substituting 4.2, and

‘employing 4.1 when the mean is taken, the expression for

Aez(t) can be reduced to

2(6) = 3 3 [ty (tv)
e = ¥ ,u SV) "
. 15 35 g 71 Y3 |
n
{ z ECOK(t—u) - cik(t-u)j[cOk(t—v) - ¢y (t—v)]wk(t-u,t-v)}dudv
-2 z gyi (t,u){ ElcOk(t)EcOk(t -u) = ¢y, (t-u)Jo, (t,t-u)Jdu
P

To find the set of welghting functions which minimizes

ee(t), the usual calculus of variations is used. That is,
yi(t,v) + eini(t,v) is substituted for yi(t,v) where n, is
an arbltrary function for v in the interval 0 < v < ¢, and

yi(t,v) 1s understood to be the optimum weighting function
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from here on. A necessary condition for a minimum to occur

at the point (yl,...,yr) 1s that

ae2 t

H =0 for each 1 = 1,...,r

€qsenes€, = 0

That a minimum indeed occurs can be shown by calculating the

' second derivative and showing that

e

aaezftl.
D
Bei

>0 for each 1 = 1,...,r

el,...,:€r = O
The detalls off the above calculations are not shown here
but the result 1s that the optimum weighting fﬁnctions are

specified by the set of r 1lntegral equations

r t n :
lej‘oyj(t’v) {kflrcOk(t_u) - qu(t—U)]'

[cOk(t-v) - cjk(t—v)]wk(t-u,t-v)}dv

n
'k§1d°k(t)[00k(t-u) - e (t-w)lo (t,t-u) =0 (4.3)

for 0O <u <t and each q = 1,...,r. This set of integral
equations 1s, of course, just a speclalization of the
generalized r-dimensional Wiener fllter to the type of inputs

and desired output shown in Figure 8,

B. The Lilnear, Algebraic Operator
As mentioned in the introduction there are usually.
quite a number of possible ways to construct the linear,
algebraic operator shown in Figure 5., For example, with

appropriate assumptlons about the linear independence of the
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rows of the A matrix, there are 3 possible ways of choosing
the linear, algebraic operator for m = 2 and n = 3; 6 possible
ways for m‘= 3 and n = 4, and 16 possible ways for m = 2 and

n = 4. The number of possible ways of choosing the linear,
algebralc operator grows at a rather fantastic rate as m and
n become larger,

Since 1t is not feasible to treat all the possible ways
of constructing the general linear, algebraic operator shown
in Figure 5, a different approach 1s chosen here, The apprbach
here is'to choose a form that is fairly general, yet specific
enough so that the notation does not bécome too cumbersome and
for.whibh only a few assumptlons need be made about the A
matrix. Then the generalizeﬁ (n-m)-dimensional Wiener filter
which corresponds to thls linear, algebralc operator is
specified and if this system can be shown to be optimum, it
wlll follow that wheﬁever A permits another system of similar
form to be constructed, it too wlll be optimum. |

The form of the linear, algebralc operator chosen here is
" the portion of Figure 9 included inside the dotted box, where

r = n-m., The notation

Oj(fl"'.’fm,fm'l',j) (4'4)
exc, f
J
1s used to denote a linear, algebraic operator (or sub-
operator) having inputs fl(t)""’féj-l(t)’ fpj+1(t),...,

fm(ﬁ), fm+j’ where p, is included in the set of integers
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["— - - - — — /T
| i
Sl+NO i + X=85.,+e
N ESTE PYRPRPE A () >
| >
|
| SACTRTECLTLINED I [Ng-1y
exc. fpl 11 | y1(t,v)
| -
N
l | Yo
5 |
' -+ | N-N
| j(fl’ ’fm’fm+,j)sj+N1 2 | ° J| i)d
_exe. I N ead yJ(t’V)
| 5 |
|
|
| |
+ N,-N '
0 (fl""’fm’fn) s,+N_ & | 0 r y.(t,v)
exc. fp = I .
| i "
| |
_ Linear, algebralc operator |

Figure 9.

The "intuitive system"
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(1,...,m) for j = 1,...,v. To derive the specific form-of
OJ, first write the equations for input lines 1,...,pJ—1,
,pJ+1,...,m, m+J in matrix notation as (see Figure 3 and

Equation 3.4)

Al,...,m (t) (sl(t)' = 'fl(t) 7 - {hl(t) 1 (4.5)
1,00,mym+]J *
exc. pJ : : ;
Lsm(t)J | fpj_l(t) npj-l(t)
fpj+1(t) an+1(t)
g0 | [ (0)
fm+1(t) J ._nm+1(t)_‘

Then for every value of time t for which the determinant of

the matrix on the left i1s nonzero, Equation 4.5 may be solved
for sl(t) using Cramer's Rule. The resulting linear combinatilon
of fi(t)'s will be defined as Oj(fl,...,fm,fm+j). Indeed, .
because of the simllarlity of the two column vectors on the

right-hand side of 4.5, it is noted that

sl(t) = OJ(fl,...,fm,fm+J) - OJ(nl,...,nm,nm+J) (4.6)

exc. [ exc. n

pj pj

And, 0, is found to be given by

J
oj(fl""’f

exc, [
P

f

m’ m+J) =



| - |
J 7, 2ye00,m
T (s (0 s ()] £, (t)
lA yece (t)\ 1=1 l,...,mym+]
1,...,m,m+] exe. i’pJ
exXc. P
J
m 1 25¢00,m |
+z (-0t |a ()] £5(4)
1=pj+l 1,...,m,m+]j
exc, i,pJ
2 m |
m+1 recr? .
™ T ) ) (4.7)
exc. py

for J =1,...,r. Also, OO is given by

2 m
! m 141 seees
Oo(fl,...,fm) R P z (-1) lA (t% fi(t)
i=1 1,...,m
IA t% exc. 1 (4.8)
1,-.o’m ‘ *

And, of course, OJ(nI"“’nm’nm+J) is given by 4.7 with fi(t)
replaced by ni(t) for each j = 1,...,r and by 4.8 for j = O.
It 1s also observed by comparing 4.6 with Figure 9 that

No(t) = oo(pl,...,nm)
and NJ(t) = Oj(nl,...,nm;nm+3) (4.9)
exec. n
P;

for J = 1l,...,r. Thus the expressions for No(t) and NJ(t)
have been established and are given by 4.8 and 4.7, respec-
.ttively, with fi(t) replaced by ni(t) in both equations.

' As a simple example, consider constfucting a linear,
algebraic operator for the inputs shown in Figure 10(a).

The quantities that can be measured are the signal levels
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o+ ny

fl = Sl + 8

)
f2 = Sl + 252+-n2 -
f3 =.s1 + 32 + n3. R

(a) The avallable inputs

Apukdl

2 | N
|
| -1 |slwn2 + 2n3

|
f3———,2 |

lo (£,,Fs) |
L_%__eigé -
(b) The linear, algebraic operator

Figure 10, Example 1llustrating the linear, algebralc
. operator .
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of the 3 input lines, namely fl’ fe, and f3, and the

question 1s how to "operate" on these measurements to get the
desiréd outputs of the linear, algebralc operatof. The
method suggested 1s to 1nltilally treat the nolses as if

they, too, were known and write the input as a set of 3

equations in the two unknowns 8y and 853 l.e.,
84 + Sy = fl - nlv
s1 + 282 = f2 - n,
sl + 8y = f3 - n3

In partlcular, the flrst two of the above equations are

linearly independent and may be solved for s Thls ylelds,

l.
5, = E(fi - nl) - (f5 - ny)
Upon rearranging:this can be written

2f + 2n, -

1~ T2 =8 1" P
Comparing thils to Figure 9, 1t 1s observed that the left-hand
slde of this eqﬁation defines .the operator Oo(fl,fz).
Similarly, the last two equatlions are linearly Independent
and may also be solved for S to yield the eduation

- fé';‘2f3 =8 - N, + 2ng |
The left-hand slde of this equation defines fhe operator

Ol(fl, o f3), where p; = 1. The complete linear, algebraic
exc. p,

operator 1s shown in Figure 10(b). Note that in this example,

13 cannot be chosen as 2 since the flrst and third equations
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of the above set are not linearly independent. Consequently,
fhe number of possible linear, algebralc operators 1s reduced
from 3 to 1, and the number of possible "intultive" systems 1s
reduced from 6 to 2. One of these "intuitive" systems
conslsts of the linear, algebralc operator shown in Figure
10(b) together with the Wiener filter which makes an optimal
estimate of (2n1 - n2) from (2n, - 2n3); the other

"{ntultive" system consists of the same linear, elgebraic
operator together with the Wiener filter which makes an
optimal estimate of (2n3 - n,) from (2nl - 2n3).

Before proceeding to the integral equations which
describe the generalized r-dimensional Wiener fllter
assoclated wilth the llnear, algebralc operator proposed here,
1t seems appropriate to discuss the limltatlons of the
chosen operator. From a close inspectlon of Figure 9, 1t is
noted that there are two reasons for the proposed operator
not belng completely general, These are:

(1) There are n-m lines, namely lines m+l,...,n,

whilch are included in only one operator. This
means that nﬁ+l(t) is included in only in Nl(t),...,
nm+r,(t) is included only in Nr(t).

(2) The fact that No(t) appears as part of the input

to each of the welghting functions TyseeesVpe
In splte of belng restricted in these two ways from the

most general case, the linear algebralc operator proposed 1n
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this section is sti1l falrly general and 1s of considerable

practlical lmportance..

C-

The Integral Equatilons

With the inputs to the filter part of the "intuitive

system" now known and of ‘the basic form 4.2, the integral

equations for the generalized (n-m

( )-dimensional Wliener

filter corresponding to the linear, algebralc operator shown

in Figure 9 can now be written by inspectilon.

n-m inputs is of the form Ny (t) - Nj(t), so it would be

convenient to have an expressilon for thlis difference,

n
kzl[cOk(t)-ch(t)]nk(t) = No(t)"NJ(t)

Ae’oo"m(t) A?,..c,m (t)
l,...,m 1,...,m,m+]J
m - exec, k exc. kK,p
= T (-1)1‘*1[ x ’ n, (t)
k_l . 1,-..,m l,ooo,m k
oxo D ’A (t) A (t)
* J '1_’-.'"m 1,.:.,m,m+j
: exc. py
A2,...,m(t) .
l1,...,m
exc. p;
eyttt J n (t)
+(-l) 1,...,111 pj
A (t)
'l,...,m .
2 LI m
AlJ L (t)l
’ooo’m
exc. p
m+l g
+(-1) 1,...,m Mg (€)
A (t)
1,.occ’m’m+j

exXe. pj

Each of the

(4.10)
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For the quantity inside the ’brackets in 4,10, the minus 'sign
is used when k < py and the plus. sign 1s used when k >'pj.
Note that 4.10 glves an expliclt expression for the quantity
cOk(t) - Cjk(t) for k = 1l,...,nand j = 1,...,r, Therefore
4.10 along with the expression for cOk(t)

2y000,Mm
i | m )
E oo (E)ny(£) = No(t) = 5 (1) —gxe- K (4) (4.11)
k=1 k=1 AT

l,...,m

could be substituted directly into 4.3 to get the desired set
" of integral equatilons for the optimum welghting functions
yl(t,v),...,yr(t,v) shown in Figure 9. The result would be .
a form for each of these integral equations which would not
be at all convenient for later comparison to the "optimum"
filter of Chapter III. Fortunately, however, the form of
cOk(t) - cjk(t) shown in 4.10 can be simplified considerably
with the aid of Theorem 1 of Chapter II. Note thatlélthough
Theorem 1 was stated and proved in terms of a matrix A having
constant elements aij’ the proof would not be altered by
making aij = aij(f). Consequéntly Theorem 1 can be extended
to a matrix whose elements vary with time. By putting the
two terms within the brackets 1n 4,10 over a common denominator
and then using Equation 2.1 to reduce the numerator, the

quantity within the brackets of 4.10 can be written



P2 1,...,m
Al,...,m(t) ) Al, .,m,m+3(t)
exec, pJ exc., k
1,'.0,m l’OOQJm (4.12)
]A S R (t)
1,...,m 1,...,mym+j
‘exc., pj

for both k <'pj and k > pJ. If this quantity is substituted -

back into 4.10, and both the numerator and denominator of the

. l,...,m
coefficient of n_ (t) are multiplied by IA ’ |, then
pJ l,...,m,m+]
exc. p
J
4,10 may be reduced to
n
2,¢.o,m l,...,m
iA ()|« a7 <t)]
l,ooa,m 1,.--,m’m+,j
m K+1 exc. pj exc. k
£ (-1) — n, (t)
k=1 l,o-o,m 1,...
A (t)] - |A (t)
1"-._’m ’ l_’.o.’m,m+j
exc. p
25000 ,m 'J
A ) s (t)‘
l,...,m
exc, p
k+1 g . )
+ (-1) l,...,m nm+j(t)‘ (%4.13)
A (t) |
l’ooo_'m’m+J
exc. pjy

While the reduction of 4.10 to 4.13 may appear to be a minor

step at thils point, 1t is in reality a very important one.
The integral equations for yl(t,v),;..,yr(t,v) can be

obtained by substituting 4.13 and 4.11 into Equation 4.3.

After some rearranging, the resulting set of integral
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equations can be written in the following form:

2,...,m 2,-¢¢’m
A (t-v) A (t-u)
l,...,m l,...,m
t exc, exc.
[y (t,v) g AL :
yq v 1 m 1 m
0 S e o0y 3 sy
A (t-v) A (t-u)
ly...,mymt+q 1l,...,m,m+q
exc. pq | exc. pq
( av + 3 [y, (E,v)
®. t-u,t-v)dv + T yilt.v)
m+q .’ J=1ch):1
2y00.,m 25000
AT (ey) A (£-u)
l,...,m ly.ee,m
ixc. pj . ixc. pq
K] oo’m ,o'nm
A (t-v) A ’ (t-u)
1l,...,m,m+J l1,...,m,mtq
exc, exc.
x¢. D Pq
1’ '.’m 1,...,111
]A (t-u) A (t-v)
1,. a,m,m+q 1’ ’,mlm+tj
m exc. k exc. k
{ El l,...,m " 1,...,m o(t-u,t-v)lav
A (t-u) A (t-v)
1’ . ’m 1,.-.,m
2,.'.’m 2".|,m l,!"’m
A - (t) - |A (t-u) ~jA (t-u)
l,...,m l,co.,m l,...,m,m—f-q '
m exc., k exc. pq exc. k
_Z .
- ly,e..,m l,...,m 1,...,m
k=1 A (t) *|A (t-u) "A (t-u)
l,ooo’m 1_’.0-,m 1,---,m,m+q
exc. p
¢ (tst-u) = 0 -4 (4.14)
for 0 cu<tand eachq=1,...,r (r=n - m),
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This completes the development of the "intultive"
system. It is noted in passing that 4,14 turns out to be a
very convenlient form for the integral equations specifying
the weighting functions yl,...,yr. This fact will be
appreciatéd more 1n.the next chapter where the "intuitive"
and "optimum" systems are compared. The reader is reminded
of the importance of Theorem 1 1n reducing Equation 4.10 to
Equation 4.;3, which in turn makes the relatively simple

form of 4.14 possible.
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V. COMPARISON OF THE OPTIMUM AND INTUITIVE SYSTEMS

A comparison of the "optimum" system developed in
Chapter III with the "intuitive" system of Chapter IV shows
that both possess the same general characteristics; that is,
both are linear (possibly with time varyiﬁg parameters),
distortionless, and finite opefating time filters. The
"optimum" system was, of course, constrained to be distortion-
less, but it 1is interesting to note that the distortionless
property of the "intuitive" system arose qulte naturally.
To make a further comparison of the two systems 1t 1s assumed
that both systems have the same inputs (namely those of
Figure 1), that these inputs are arranged in the same order,
and that the assumption stated in 3.16 still holds, i.e.

lye..,m
A (t-v)] # O for all v such that 0 < v < t. (5.1)
lyee.ym

Also, 1t 1s tacltly assumed throughout the remainder of this
discussion that a solution of the set of integral equations
3.20 describing the "optimum" system exists. This is not to
say that finding the expressions for w{(t,V),...,wﬁ(t,v) |
which constitute the solution is an easy task, but merely that
such expressions do exist 1f some means can be found to
calculate them,

A1l that is necessary to demonstrate that the ”1ntuitive"
system 1s indeed an optimum solution is to show that the mean-
square error associated with the "intuiltive" system 1s the same

as the mean-square error assoclated with the "optimum" system.
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Certainly a sufficlent condition for this is that the

over-all welghting function from input line 1 to the output is
the same for the "intuitive" as it is for the "optimum" system
-for each 1 =1,...,n, And, in fact, this latter method

turns out to be easler than the direct calculation and
comparison of the mean—squaré erfors since 1t avoids having

to solve the set of integral equations associated with each
system.

Let wi(t,v) be defined as the over-all weighting function
from input line 1 to the output of the "intuitive" system, and
let wf(t,v) be retained as the symbol for the corresponding
welghting function for the "optimum" system. Then in view
of the above paragraph 1t 1ls desired to show that wi(t,v) =
wf(t,v)'for each 1 =1,...,n. But the "intuitive" system
is distortionless so wl(t,v),...,wm(t,v) are expressed in
terms of wm+l(t.,v),...,wn(t,v) by Equation 3.18 with wi*(t,v)
replaced by wi(t,v); Therefore, wi(t,v) = f(t,v) for
1 =1,...,m if w.i(t,v) = wi(t,v) for 1 = m+l,...,n, and the
problem of showing the Mintuitive" solution is an optimum one
reduces to showing that wi(t,v) = w;(t,v) for 1 = m+l,...,n.

Since line m+ J enters only into the linear algebraicz

operator OJ, the output due to line m+] alone is given by



t
[y (ew) ()™ ] frpg(E-v)av  (5.2)

for j = 1,...,m=-n. The above expression can be written by
inspecting Figure 9 together with Equation 4.7. It follows
from 5.2 and the definition of the over-all weilghting function
wi(t,v) that |

=S ¢}
A (t-v)
l,...,m

_ (_nymtl |
Wm+3<t’v) = (-1) 1,...,m -
A (t-v)
l,...,my,m+]
exc. pj

vy(t,v) (5.3)

for j = 1;...,n-m, Note that 5.3 1s true regardless of the
behavior of the determinants in the numerator and denominator
of the right—hand side of the equation.
An examination of 4,14 reveals that the quantity
’ PR i1}
‘A ’ (t-u)

lyeeo,ym
exc. p

2 (5.4)

1,...,m
A (t-u)
1’ o0 o’m’m+q

exc. pq

appears in every term on the left-hand side of the equation
and does not involve the varlable of integration or any of

the indices of summation, Therefore, thls quantity may be
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factored out of each term. At the same time Equation 4,14
may be multiplied through by (--1)m+l and Equation 5.3 used
to replgce yj(t,v) by wm+J(t,v) for each J=1,...,n-m.
Thus, 1n terms of 1ts over-all welghting functions, the-
set of integral equations describing the "intultive" system

can be wrltten as

2y eee,m
k S (t-u)
l,...,m
eXC. p - N t )
T Lo {[ wy (£,v) ey (t-u,t-v)av
,ooo,m o
\A (t-u)
l,...,m,1 -~
eXC. Py_n
n ft (£v) 1
+ 3 w,(t,v T .
J=m+l' 0 J ‘A ’-oo,m(t-u) . lAl,.-.,m(t-v)
1"",m 1,-..,111
m '1,...,m 1,0.o,m
{2 & m i(t'u) " 1A m J(t-V) wk(t—u,t-v)}dv
k=1 300l s e vty
exc. k exc, k.
, 1,...,m 2,...,m
R TS | B N (t), .
m | lses.omd 1,...,m t
+ (0" 2 PR T o (t-w,t)} = 0
1""’m 1,...,11’1 ¢

for 0O <u<tand each 1 = m+l,...,n. Note that 1n golng
from 4.14 to 5.5 the dummy index q has been replaced by i-m
and the dummy index J has been replaced by j-m. These
changes of 1ndlices are made so that 5.5 may be more con-

venlently compared to 3.20,
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For the remalinder of the discussion, 1t 1s assumed that
there exists at least one set of integers (pl,...,pr),
where as before r = n-m, such that for each of these integers
the determinants
1,.oo’m )
A (t-v)

1, e o,m,m'*'J
exc. Py

(5.6)

2 oaa;'m

and ]A ’ (t-v)
1,..0’m
exc. p'j

(5.7)

goes to zero at most at only a finite number of isolated
points in the interval O < v < t. This assumbtion on 5.6
along with 5.1 insures that %here are at least (n-m+l) m

by m submatrices of the matrix A(t-v) which have nonzero
determinants almost everywhére in the interval O < v < ¢,
which in turn implles that Equation 4,5 can be solved for
sl(t) almost everywhere in the n-m+l different ways suggested
in the "intultive" approach. The above éssumption on 5.7
1néures line m+j is.not glven zero weight over any subinterval .
of the interval O < v < t by the rather arbltrary choice of
the linear, algebrailc operator. If the determlnant 5.7 were
zero on some sublinterval, it could be argued intultlvely

that any system incorporating this linear, algebraic operator
could not, in general, be expected to be an optimum system
since the decislon to give line m+] zero weight over that

subinterval would be based on the arbiltrary cholice of the
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linear, algebraic operator and not on any property of the
noise nm+3(t). Notice that the assumptions at the beginning
of this paragraph are just the properties that one would
normally expect these determinants to have when picking a
linear, algebraic operator, so these assumptlons amount
to assuming that at least one "reasonable intuitive" system
exlsts., PFrom this point on, unless otherwlse stated, when
an "intultive" system is mentioned 1t is understood that, at
a minimum, the determinants 5.6 and 5.7 are nonzero except for
a finite number of 1solated points 1n the interval O < v < ¢
for each integer included in the set of integers Pys-..sPp
associated with the particular linear, algebralc operator.
Proceeding to the.direct comparison of the'integral
equations which describe the "optimum" and "intuitive"
‘systems, 1t 1is observed that the two systems are most easlly
compared when nelther the determinant in the numerator nor
the.déterminané in the denominator of 5.4 is zero anywhere in
the interval 0 < Vv < t. In this case the quantity in front
of the braces in 5.5 1s nonzero which forces the quantity
within the braces to be zero. If thils is true for each
i =m+l,...,n (recall that q = i-m), then comparison of 5.5
and 3.20 reveals that wi(t,v) = wi(t,v) for each value of 1.
Therefore, the "intultive" system is indeed an optimum one
for this case. Furthermore, Equation 5.3 can be solved
for yj(t,v) in terms of wm+J(t,v), and for this case, it is

observed that for any fixed values of t and v, yj(t,v) is
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Jjust a nonzero constant times wm+3(t,v). This means that not
only 1is the existence of a solution to the set of integral
Equations@.luassured, but also yj(t,v) is as "well behaved"
as wm+J(t,v).

The situatlion consldered in the previous paragraph is of
considerable practical interest, but it seems as though, at
least under certain assumptions, the "intuitive" system
might be an optimum one under less restrictive conditions
than assuming both the numerator and denominator of 5.4
nonzero everywhere for all values of 9 = 1,...,r. To see how
these restrictions might be relaxed, consider all the noises
nl(t),...,nn(t) to have smooth, bounded autocorrelation -
functions. TUnder thils assumption, each noise has a timewlse
correlation wilith itself and something can be sald about the
value of ni(t) from a measurement of this noise at time
t + e, where ¢ 1s small. Consequently, 1f a measurement of
ni(t) 1s unreliable or not available, all is not lost if a
measurement of ni(t+e) is avallable.

In addlition to the above assumption about the nolses,
consider t to be fixed 1n the following discussion. Also
make the assumption that the optimum welghting function
w§+1(t,v) is a smooth, bounded function in the open interval
0 <v «<t. Notice thaf it might not be necessary to assume
this property; that w$+l(t,v) might possess 1t quite naturally

from the solution of the set of integral Equatlions 3.20.
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But the property is assumed here in the absence of a solution
to 3.20.

For the first case in relaxing the restrictions consider
the determinant in the numerator of 5.4 to be nonzero every-
where for all values of q and the determinant in the denomin-
ator to be nonzero everywhere for q = 2,...,r. For q =1,
the determinant

l1,...,m
A (t-u) (5.8)

1,...,m,m+l
exc. py

is assumed nonzero for all u 1n the interval O to t except at
the point ul(O <uy < t) where it 1s zero. If the set of
integral Equatlons 5.5 specifyling the over-all welghting
functions of the "intuitive" system 1s compared to 3.20 for
this case, 1t 1s observed that the quantity within the

braces in 5.5 is forced to be zero which means that over-all
welghting functicns for the intultive systemrére forced to
obey the same set of integral equations as the "optimum"
welghting functions. Conséquently, for this case too, it 1s
found that wi(t,v) = w;(t,v) for each 1 = n+l,...,n, and the
"intuitive" system 1s again optimum. This case is interesting
for two réasons. One is that at first glance 1t appears as
though there might be some doubt as to whether a sclution
exists to the set of integral Equations 4.14 since the
integrands involving.the quantity 5.8 are unbpunded.

However, 5.3 and the assumption onlw;+1(t,v) assure us that
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yj(t,v) does exist for each j = 1,...,r. The second is that
the operatof Ol does not exist at time t—ul and 1t might
appear at first that the solution could not be an optimum.
However, 1t must be remembered that a finlte amount of past
data, not Just the data at one instant, goes into making the

estimate of s, at time t, and furthermore the determinant

1
5.8 being zero at u = u, effects the optimum solution, too,
although not in such an obvious way. This concept may be
extended to cases where 5.8 goes to zero at several points in
the interval 0 < u < t, and then also to similar situatlons
for other values of qg.
Next, let's try to relax the restrictlon that the

determlnant

Ae’...,m(t-v)

l,...,m

exc, Py

1s nonzero everywhere for each value of q = 1,...,r. To

(5.9)

examine this case, consider the denominator of 5.4 nonzero
everywhere for each'q =1l,...,0, and the numerator of 5.4 to
be nonzero everywhere for all values of q except q = 1.
For q = 1, the determlnant

2,-oa,m

A (t-u) : -~ (5.10)
l’l.l,m
exc. pq

is assumed nonzero for all u in the interval 0O to t except at

the point ul(O <y < t) where it is zero. Comparison of the
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set of integral;Equafions 5.5 specifylng the over-all
welghting functions for the "intuitive" system to the set
3.20 for the "optimum" system shows that for 1 = m+2,...,n the
quantity within the braces iﬁ 5.5 must be equal to zero, and
therefore these n-m-1 lntegral equations are the same for
both systems., For 1 = i there is one value of u, namely U,
for which the quantity outside the braces in'5.5 is zero and
consequently the quantity within the braces is not forced to
be zero, But there is nothing wrong with setting it equal to
zero anyway at this point and if thils 1s done, the set of
integral equations describing the over-all welghting functlons
for the "intuitive" system 1s again the same as the set for
the "optimum" system. There is still one difficulty though,
which 1s that even though a solution to the "optimum" system
is assumed to exist, and consequently wm+1(t,v) exlsts, there
i1s no assurance that yl(t,v) exists at v = U, . However,
since it 1s also assumed that wm+l(t,v) is smooth and bounded
for 0 < v < t, which seems a reasonable assumption, then
5.3 shows that yl(t,v) becomes unbounded at v = uq in sv ‘h a
way that the 1limit of the product
A2,...,m(t_v)
l,0e.,m

exc. p *
1 ¥ (t,v) (5.11)

1,...,m .
At (t-v)
1l,...,m,m+l

exc. pq
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remains bounded as v-uj. All of this suggests a way to solve
the set of integral. Equations 4.14, for this case, in such
a way as to "force" the "intultive" system to be optimum.
That is, instead of solving directly for yl(t,v), yg(t,v),\

e sy (t,v), solve for w . (t,v), yy(t,v),...,y.(t,v) and
then get yl(t,v) from 5.3. e

The concepts discussed 1n the above case may be extended
to situations where 5.10 goes to zZero at several values of u
within the open interval O < u < t, and then also to similar
situations for other values of q.

The results of this chapter may be summarized as follows:

1. If the determinants in both the numerator and the
denominator of 5.4 are nonzero for all values of u in the
interval O S u < t and for each q = 1,...,n-m, then the
corresponding "intuitive" system 1is an optimum system.

2, Under the assumptions that the autocorrelatién
functions of the nolses are smooth, bounded functions and the
welghting functions w$+1(t,v),...,w;(t,v) are smooth, bounded
functions in the open interval 0 < v < t (t is conéidered
fixed here), it is possible to allow the determinants in
5.4 to be to zefo at a finite number of isolated points. The
"intuitive" solution will still be an optimum colution
providing a certailn care 1s used in solving the integral

equations for the "intuitive" system.
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Because of the assumption on the ”optimum" welghting
functions and the fact that the "intultive" system is
"forced" to be optimum, the latter result appears to be of
limited usefulness, practically speaking. Thils difficulty
could possibly be alleviated by derlving necessary and/or
sufficient condltions for the exlstence of a solution to a
set of integral equations of the form of 3.20 or 4,14,
However, this would probably be quite a difficult task.
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VI. AN EXAMPLE USING THE WIENER FILTER

An example wlth four 1nput lines, two
signals, time stationary Gaussian noises and a constant A
matrix is considered in this chapter. The system or
filter 1s allowed to operate on an infinite amount of the
past data. Consequently the optimum filter turns out to be
a constant parameter linear one. This type of example is
chosen because the'integral equations assoclated with it are
much easier to solve than those for the more general type
of problem treated in the previous chapters. The four
available input lines are of the form shown in Figure 3 wlth

A= [1 1] (6.1)
1 2
1 -1
1 -2

and the autocorrelation functions of the noiseé givén by
oy () = eIt

v, (t)

03(t)
®4<t) 4s(t)

This completes the specification of the problem. In

5(t)
e-e{tl (6.2)

the following sections, the "optimum" filter and 2 of the
16 possible "intultive" systems are considered.
A, The Optimum Filter
The set of integral equations describing the optimum

filter for this example 1s given by 3.20 speciallzed to an
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infinite operating time, constant parameter filter, time
stationary noises, and a constant A matrix. These changes
allow letting t-=, replacing wg(t,v) by wg(v), replacing
wk(t-u, t-v) by mk(u-v) and mk(t,t-u) by mk(u), and dropping
the arguments in the determlnants appearing in 3.20,
respectively. -Also, w§(v) can be defined as belng zero for
v < O to satisfy the requirement of physical reallzabllity,
and the loﬁer limit on the integrals changed to -=. Once
3.20 1s put into the form described above, one can take the
Fourler transform of both sides utilizing the convolution
theorem from Fourler transform theory. Letting m = 2 and

n = 4, the transformed set of integral equations describing

the optimum filter can be written

1,2 1,2
\A \[A \
4 1,2,1 1,2,
Wi(s) O, (s) + pwi(s)[ ¢ —SHe= X exe. Kk 4 (5)3
1 1 j=3.9° k=1 1,2(° «
ol
1,2
1,2 W
R
5 1 1,2,1 1,2
+ y —8Xxc. k 2exc. K (Dk(s) = Ai(s) for 1 = 3,4 (6.3)
=1 1,2
lA
1,2 '

]

where W;(s)

B (s)

Ai(s) = an unknown function which has all its poles in
the right-half s-plane

Fourier transform of Wf(t) with Jw replaced by s
-

Fourier transform of mk(t) with jw replaced by s
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Notice that @, (s) is Just the familiar power spectral density
with Jw replaced by s, and for the two white- and two

Markov-noises of this example are given by

i) = -22+1
@2(8) = J. v
4 (6.4)
@3(5) = -82+4
¢h(3) =4

Also, the various determinants involved in the two integral

equations are gilven by

1,2 | 1,2

A =1 A "

1,2 2,4

1,2 2|

I - A, =@

1,3

1,2

2] -3 4] =2 (6.5)
2,3 . °
Al | =-3

1,4

Substituting these quantitiles into 6.3, the two transformed

equations describing the optimum system become

wa(s)—p— + 281 4 47 4 ug(s)(222L 4 67

-87+1

I —5%41
-82) 5. Ag(s) | (6.6)
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and w§(s)513§§1 + 61 + WE(s)[4 +.l§§2) _ 3
-8 +1 ) -.S +1

—%-3=A4(5)

The method of undetermined coefficlents 1s used here to
solve 6.6 for w§(s) and Wf(s). This method is similar to that
suggested by N. Wlener in Chapter 4 of (9) and is also
discussed by way of example 1n Chapter 15 of Brown and Nilsson
(5). The notation used here is similar to that used in the
latter., The basic method involves solving for wg(s)
and Wn(s) from the two nonhomogeneous equations of
6.6 just as if A3(s) and Au(s) were known, then expanding
the resultant expresslon for each by partial fraction
expansion utllizing the fact that A3(s) and Aq(s) have all
their poles in the right-half s-plane wheréasVW§(s) and
Wﬁ(s) have all their poles in the left-half s-plane. For
example, W%(s) is given by |

(-252+14) (-138%445) (-sZ4+4) - (~65°+30) (-35%49) (-52+4)
(-s2+1)(16s4-2o6s2+540)

W§(s)=

(-13s°+45) (-s%+4)A5(s) = (-65%+30)4,(s) i

+
‘ 16s4

- 20652 + 540
Since wg(s) 1s allowed to have only poles in the left-hand
s-plane, it 1s found that it must be of the form
k k k
_h 5 6
Wi(s) =531 * 57310 T siLLos T X7 (6.7)
Similarly, wx(s) is found to be of the form
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k k k

_ 1 -2 3
Wi(s) =537 * 573715 T SITOTE (6.8)

A constant term needs to be included in each of these expres-
eions because of 1lmproper fractions. However, since the
noise on line 4 is white, the constant in Wﬁ(s) must be zero
or the output from that line would be infinite which would
obviously not result in a minimum mean-square error. The
next steps are to substitute 6.7 and 6.8 into the first of
Equations 6.6, multiply, perform a partial fraction expansion
of the product terms, and collect the coefficients of similar
terms. -‘The resulting equation must be an identity in s, and
A (s) has no poles in the left half s- plane Therefore, the

coefficients of all the terms whose poles are in the left-half

= a 1 1 1
s-plane, in thils eaee the coefficients of (s+1)2’ STTr 515
s+§ 19° and s+%915’ must vanish. This results in 5 equations

in the 7 unknown constants kl;...,k7. Substituting 6.7 and
6.8 into the second of Equations 6.6 results in 4 more
equations, only 2 of which are independent of the 5 derived
above., Omitting all the algebra, the resulting 7 lndependent
equations are
4k1 + 3k, =0
21k, + 7.3k, + 17.48kg + 12k + 5.49k5 + 13.14k6+12k7= 8
6k, + 2.74k, + 6.56k3 + 9.14k), + 2.06k5+ 4.91kg+ 4.5k7= 3
9.11k, + 3.075k; = O '

5

0.942k., - 3.O4k6 = 0

3 .
-O.5k4 + O.42k5 - 5.88k6 + 0.5k7 = 0, and 2k7 =1
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From these it is found that

ky = ky = O
k, = 0.040
kg = 0.11

kg = -0.120
ke = 0,034
k;, = 0.500

‘'This completes the determination of the optimum transfer

functions W§(s).and Wﬁ(s). The transfer functions W{(S) and

Wg(s) are given in terms of these by the Laplace transform.

of Equation 3.18 special;zed to this problem, which becomes

(_1)1+1 5 4‘ 1,2 .
Wx(s) = 5 {'A iy ’A jte))
o 1.2 =3 11,2,
1.0 exc. 1 ' exc., 1
3
for 1 = 1,2. With this it is found that
‘ ~ 0.198 0.540
Wi(s) = 0.500. + 5375 - T 015
',_‘ 0.119 0.397
Wi(s) = - 553755 + 53018
) 0.120 . 0.034 (6.9)
W§(S) = 0.500 - 5+3.19 T 3+1.915 o

' 0.040 . 0.110
Wi(s) = 55399 + 511,918

If the welghting functions for the "optimum" system are
desired, they can be found by taking the inverse Laplace

transform of Equation 6.9.
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Although not needed for thils example, the mean-square
error 1s of Interest. It can be found by specialization of
the equation for e2(t) given in Chapter III (just before

Equation 3.7) to this example, or by
eg '='%' f 5 Wi (Jw) 2<Di(3w)dw (6.10)

8ince it 1s a steady state errorl. The calcﬁlation 1s not

shown here, but the result is

eg(t) = 0.4oy,

B. Pirst "Intuitive'" System

The first "intultive" system is chosen to fit the form
of Flgure 9 with py = 1 and Py = 2 and 1ls shown in Figure 11.
The integral equations for yl(t) and ye(t) are given by 4.14
Specialized to an infinlte operating time, constant parameter
filter with time stationary nolses and constant coefficients
on sl(t) and sz(t). As in the previous section, the integral
equation of 4.14 can be transformed. The quantities of
interest are given in 6.4 and 6.5. Upon substitution of these
quantities, the transfer functions Yl(s)fand Y2(s) can be
written (after multiplying the first through by (- )
and the second through by (-3))

lsee for example Chapter 13 of Brown and Nilsson (5)
for a discusslon of this method and a short table for
evaluating integrals of this form.
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Figure 11. The first "intuitive" system for the Wiener
example

+ 282 + n

ol

+ e

\Y)
\4

S

_ ' 1
S 232 + n4 —2—(1’12 -+ 1’14) - 62

1 1 2
+ 3N+ 7nh; - 50
27T By T 3
ﬂ N
@é\/ /Yi“%@

o=l
wln] | wl-

+ n

[6)}
H
1
143}
n
w
7
Wi
+
N
ol
o)
N
+
ol
(o]
I~
1]
wl
=
<
m-
~
(67

ol o

Figure 12. The second "intultive" system for the Wiener
example
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-2y (a) (= + 22l 4wy 4 (- Iy B[R 4 6)

-s2+4 -8 +1 ~s%41
—i—l— + 2 = A (s)
-8 +1
and - 2y, (s) (222 + 6) + (- ry(s))(n + 282 3)  (6.11)
-8 +1 -8 +1
#8134 (s)
- +1-

where Al(s) and Ag(s) are unknown functions having all their
poles in the right-half s-plane.
~ These equations can be solved for Yl(s) and Yg(s) very
easily by comparison to Equations 6.6, Notice that since
Al(s), AQ(S)’ A3(s), and A4<S) are unknown functions, it cannot
be sald that A, (s) = Ay(s) and A, = Ay(s). However, the
effect 6f these unknown functions on their respective equa-
tions 1s such that 1t can be said from compariscn of 6.6
and 6.11 that '
2y (s) = Wx(s)
371 3
. (6.12)
3 ¥(s) = Wi (s)
The truth of this latter statement can easily be inferred
from an article by Wong and Thomas (10) describing a general
method of solving systems of equations of this type.
The easiest way to show that the mean-square error ;?

assoclated with this "intuitive" system is the same as that

of the "optimum" system is to compare the over-all transfer
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functions Wi(s) of the "intuitive" system with the optimum

transfer functions Wi(s). It 1s observed from Figure 1] that

W3(S) =% Yl(S)

_‘13-' YQ(S)

=
=
1]
~~
|

It follows from these equations and Equations 6.12 that W3(s)

= W§(s) and W4(s) WH(S). Also, from Figure 8, it 1s observed

that
Wy(s) =2 - 2Y,(s) - 2Yp(s) +§ ¥, (s)
=2 - 3w3(s) - by (s)
= WT(S)
and Wé(s) = -1+ Yy(s) + Yé(s) + % Y, (s)
= -1 + 2w3(s) + 3w4(s)
= W5(s)

Since all the transfer functions are the same, fhe systems
are equivalent, and obViously the mean-square errors are
the same.
C. Second "Intuitive" System

For the second "intuitive" system the inputs are
rearrénged as shown in Figure 12. Notice that the "intuitive"
system in Figure 12 fits the form shown in Figure 9 with
p; = 1 and p, = 2. The integral equations for yi(t) and
yé(t) are given by 4.14 specialized to the assumptidns of
this example. These integral eduations can be transformed
as before by defining yi(t) and yé(t) as being zero for

t < 0. The quantitlies of interest are now given by
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Pi(s) = Py(s) =1

Oy(s) = Pyls) = &

Psls) = Py (s) = ;:2+1 . (6.13)
\ 4

(I)L(S) = @3(5) = —82+4

and (leaving off the prime notation on the new A matrix)

1,2 1,2

A = -4 A = +1
1,2 2,4

1,2 2

A = -1 | Ayl = -2

1,3

1,2 2 A
A | =3 IA = 42 (6.14)
2,3 1

1,2 '

A = -3

1,4

Upon substitutlion of these quantities, multiplication of the
first equation through by (-24), and multiplication of the
second equétion through by (-8), the transformed integral
equations specifying the tﬁ?nsfer functions Y!(s) and Xé(s)

1
can be wrlitten

-—Yi(s)(9+4+—§-§,—2—1) Y s)(3+12)

-8+l
+6 +8 = A‘(s)
and - —Y'( (3 + 12) - —-Y'(s)(l + 36 +—§lﬁ) - (6.15)

~s%+h

+ 2 + 24 = AL(s)
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where Ai(s) and Aé(s) are unknown functions having all their
poles in the right-half s-plane.

Since it is not possible to solve for Yi(s) and Yé(s) by
simply comparing Equations 6.15 to Eduations 6.6, the method
of undetermined coefficients wlll be used to solve for these
gquantities. The calculation proceeds much as 1t did in
solving for W%(s) and Wﬁ(s) in the first section of this
chapter, so most of the detalls are left out here., By
solving the two nonhomogenous equations in 6.15 for Yi(s)

and Y.(s) and looking at the significant terms, i.e., the

2
ones with poles in the left-half s-plane, it is found that

Yi(s) and Y!(s) are of the form

2
K K
> _ o 3
5¥1(s) = Xk * 5¥3.19 * 591.915
' k K
2ty ke 6 .
and §Y2(s) =k + 57319 T SIT.915 (6.16)

When these equatiohs are substituted back into the filrst of
the equations in 6.15, the result must be an identity in s.
Since Ai(s).has no poles in the left-half s-pléne,,the
coefficlents of all the left-half pole ferms on the left-hand
side of the resulting equatlion must be zZero. The same
argument can be used when Equations 6.16 are substituted into
the second equation in 6.15..'Together these yield six
independent equations in six unknowns kl,...,k6. The six

equations are:



78

161{1 + 7.311{2 + l7.5k3 =0
9.125k, + 15k5 = 0
0]

[

i

O.942k3 + 15k6

|
o

16k, + 13.44k5 - 188kg
13kl'+ 15k4 = 14
15k1 + 37k4 = 26
From these 1t 1s found that
k. = 0.500
k, = 0,197
k, = -0.540
k) = 0.500 (6.17)
= -0.121 '
kg = 0.0339
This completes the determination of the second "intultive"
system, but 1t 1s desired, of caurse, to compare this system
to the "optimum" system. One way to do this is to compare
the over-~all transfer functions'Wi(s) of this system with
those of.the ”optimum” system;-‘The systems are equivalent
if Wi(s) = wg(s), Wé(s) = Wﬁ(s), Wé(s) = Wf(s), and Wh(s) =

W%(s). From Figure 12, it is observed that

2 _ 0.197 _ 0.540 _ _
Wi(s) = 5¥{(s) = 0.500 + giz5y5 - Siio15 = Wi(s)
W (s) = 504(s) = 0.500 - iy + Gt = wy(s)
Wi(s) =% - Lvi(s) - (3 - 3)p(s)

_ =0.119 0.397 _
= 543,16 T s+i015 - W5(s)
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wh(s) =3 - (3 - $)Y](s) - Fvi(s)

0.041 . 0.1096
5+3.19 © s+L.015 = "i(s)

Thus, the second "intuitive" solutlon is an optimum solution,

too.
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VII. AN EXAMPLE USING THE KALMAN FILTER

From the discussion in Chapter V, the reader may have
the impression that the conclusion reached in Chapter V,
namely that under appropriate assumptions the "intuitive"
system 1s an optimum one, 1s of limited usefulness. The
only advantage that the "intuitive" system has 1s that it
reduces the original problem of finding the optimum, linear,
distortionless filter.for estimating sl(t) from the avallable
inputs to a form whereby the estimate can be made by coupling
a "ready made" fillter into the system. For continuous systems,
the "ready made" filter is the generalized (n-m)-dimensional
Wiener filter. The only problem is that the integral
equations for the generalized Wiener filter are at least as
- hard to solve as the integral equatlons describing the
"optimum" system, and in addition, certain problems about
the existence of the solution arise when some of the deter-
minants in the linear, algebralc operator go to zero at one
or more isolated points in the interval O to t. Consequently,
now that the integral equations for the optimum, linear,
distortionless fllter have been derived and are given by
3,20, it seems advisable to solve them directly and forget
about the "intultive" system for the continuous case.

For discrete systems, the Kalman filter (8) can be
chosen as the '"ready made" filter (this assumes, of course,

that noises nl(t),...,nn(t) can be generated by the use of
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shaping fllters with white-noise inputs). Since the Kalman
filter 1s the dilscrete analog of the geheralized multi-
dimensional Wiener filter, i.e., both minimize the mean-
square error and have the same estimatlion properties for
thelr respective lnput-output relationships, what was

proved for continuous systems utilizing the latter should be
true for discrete systems using the former. In other words,
1f only discrete measgrements of the inputs shown in Figure 1
are available, then an "intuitive" system using the linear,
algebralc operator of Ghapter IV and the Kalmén filter

ought to be an optimum filter (under the linear, distortion-
less constraint) for estimating s;(t). This is a very
useful result for discrete systems for the following reasons:

1. It elimlnates the need for deriving the equatilons
for an "optimum'" discrete filter.

2. In contrast to the "ready made'" filter for the
continuous "intuitive" system, the "solution" to the Kalman
filter 1s easily obtained. In fact, finding the "solution"
consists of nothing more than straight forward calculation
since the Kalman filter was deslgned specifilcally for a
numerical, computer solution.

3. The fact that one or more of the determinants
involved in the lirear, algebralc operator vanish at cértain
l1solated poilnts in the 1interval O to t presents no difficulty

since these determinants are known functlons of time, and
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each sampling instant can be chosen so that none of the
determinants involved are zero at thst time.

4, If two "intuitive" systems are constructed and have
the same sampling times, it follows that they will have the
same mean-square erfor since both wlll be optimum.

The example which follows in Section B of this chapter
amounts to a proof of this last statement for m = 2 and n = 3.
In addition it will serve as the example of the theory
developed earlier for the general case where the noises are
nonstationary, the A matrix is a function of time, and only a

finite amount of past data is used in making the estimate.

A, The Kalman Filter Equations

The equations and presentation of the Kalman filter
given here are taken largely from unpublished notes by
R. G. Brown (4), but only a very brief outline of the
method 1s offered here. The reader is referred to these
notes or other publications for a more complete descriptilon.

Most of the notation in this section is the same as that
used by Brown, the only exception belng that a letter
signifying a column vector 1s underlined here. The notation
is summarized as follows:

1. An underlined, lower case letter denotes a column
vector, |

2. An upper case létter i1s used to denote a matrix,

with the notable exceptions of b and ¢ which are also matrices,
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3. A subscript n on any of the above quantities i1s used
to show that the quantity 1ls evaluated at time tn: €.8.,
b, = b(t ) and z =_§(tn).

The mathematical model of the system is assumed to be of

the form
Zntl = PnZn T &y | - (7.1)
¥, = Mz, + 8y (7.2)
where
z_ = state of the system at time t_

o, = transition matrix
&, = column vector of state responses due to all of the
independenrt white-nolse driving functions that

occur in the interim between t and t (Note that

n+1
only white-noise driving functions are allowed in
the mathematical model.)

¥, = output vector (1.e., the ”observable").

8y, = observation noise

=
I

output matrix
'Furthermofe, the measurement errors are assumed to be

uncorrelated (both compdnent—wise and timewise) and unbiased,
il.e.,

Eley 6y;] = (V, for 1 = n (7.3)

{O for 1 #n |

where Vn 1s a diagonal matrix whose terms are the varlances
of the respective measurement errors, ng 1s the transpose

of the column vector t¥4, and the notation E{x] indicates
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takling the expecfted or mean value of x.

For the flilter, the linear relationshilp

N " A
z, =2) +v (3, - §) (7.4)
1s assumed where yn is the observed quantity at tn and
2& = best estimate of 2z, based on all past measurements

up through y 4 (the a priori estimate.of_gn)

gh = best estimate of Z, based on all measured data up
through y (the a posteriorl estimate of.gn)
b = "welghting" matrix '

Because the driving functlons are white the a priori estimate
2! of z_ 1s gilven by

2! = o, 12, (7.5)
Also, the output vector y corresponding to gﬁ 1s given by

g = M3 (7.6)
The welghting matrix bn 1s then chosen to minimize the loss

function L which 1s given by

L = E[(2,-2,) (2, -2,)]

where e 1s the estlmation error. Note that L 1s a scalar
and just the sum of the variances of the estimation errors in
the elements of the state vector. It can be shown that
minimizing this sum‘is equivalent to minimizing each
individually, so the Kalman filter minimlzes the mean-square
error associlated ﬁith the estimation of the elements of the

state vector z .
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It is convenlent to deflne two error-covariance matrices

Pn.and Pg as

P, = Ele, &) | (7.8)
and P = E[gﬁ_gﬁT] (7.9)

where e/ = 2ﬁ1§n is the a priorl estimation error.
The derivation of the expression for the optimum welghting
matrix bn is not shown here but the result is

T T -1
= *
b, = PnMn(MnP;;Mn + V) (7.10)

Once bn is determined, the a posteriori estimate 1is given by
(from 7.4 and 7.6)

2, =2 +v,(y, - M2 (7.11)

The a posterlori error covariance matrlx can be computed from

P = PX - b (M PXM + v )bl (7.12)
One can then extrapolate ghead ﬁn and P to get §%+1 and P> o
by the equations

2l =02, | _ (7.13)

P+l = cpnanrrI; + Hy . (7'14)

where Hn i1s the covarlance matrix of the state responses due
to the white-noise inputs, i.e.,
T
H, = Elg.g, ] : (7.15)
Equations 7.10 - 7.14 comprise the iterative solution for
the Kalman fllter. As is the case for any iterative process,

one must know or assume some initial values to get started.
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B. The Example

In this example, the problem of estimating s, (t from

1( n)

three avallable input lines 1s considered by the two
"intuitive" methods shown in Figures 13 and 14. The

coefficlents aij’ the signals sJ, and the nolses n, are all

i
explicit functions of time, but the time dependence is not

shown in the figures for notational convenlence. Also, the

1,2

1,

measurements are made wlthout error of Voo Ty and the

notation ‘A is used to save wrlting. Discrete

= ‘Ai,J

"secondary observables" of both systems at the sampling times
t1s tosensty e (Actua;ly, the physical situation might be
that the input lines are'measured, wlth the measurement error
beiﬂg included 1n the noises, and Vas Yy and the "secondary
observables" are calculated without further error.) Each

of .these sampling times t, is chosen so that all of the

J

Ay o

J°
the nolses 1s that ni(t) 1s related to a white-nolse function

quantities 8105 qpps a32, R lA are

, and 1A2,3

1,3
The only assumptlions made about

nonzero when evaluated at t
fi(t) by a first order, linear differential equation, and
that the white nolse functions fl(t), fg(t), and f3(t) are
mutually independent.

For the system in Figure 13, the Kalman filter is to be

used to estimate the quantity

lAllg(tn5| [app(tp)uy (8,) = ayp(tyInp(ty)] (7.16)
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for the Kalman
filter

Figure 13. Linear, algebraic operator for "System a"
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(a32n1

t) = the "observablie'

for the Kalman
filter

- a)n3) =

"secondary observable"

Figure 14, Linear, algebraic operator for "System b"
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n* This

from the measurements of vy at times fl, tef...,t
estimate can then be subtracted from the measurement of the
"secondary observable" at time t, to get an estimate of sl(tn).
The error associated with this estimate of sl(tn) is ea(tn).
Similarly, for the system of Figure 13, the Kalman filter 1is

to be used to estimate the quantity

IA1T3(tn7l[a32(tn)n1(tn) - 210(8,)n3(t,)] (7.17)

from the measurements of ¥y at times tl’tz""’tn’ and this
estimate subtracted- from the measurement of the "secondary
observable" at timé t, to get an estimate of sl(tn). The
error associated with this estimate of s;(t. ) is e (t,).

Before proceeding farther, 1t 1s worthwhile to point out
that the notation used in thilis section is chosen to agree with
that used in the prévious section. 1In addition the following
notation 1s used:

1. z,(t ) is the 1*0 component of the column vector z .
Later, i1t will be convenient to use the notation zj(t,) =
(2,),-

2. th

pij(tn) is the element in the 1“" row and jth column
of the matrix Pn. |

3. Simllar notatlon 1s used for the elements of the
other column vectors and matrices,

4, Many times 1t will be convenient to show the time
dependence (or the specific fixed time of evaluation) on one

8lde of an equatlion and not on the other. When this is done,
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it is toibe assumed that both sides are evaluated at the
same point.

The state variables, 215 2o and z3, of the Kalman
filter can be assligned as

z;(t) = n (t) fori=1,2,3 (7.18)

The assumptlons on the noises insufe that these fhree state
variables are enough to completely describe the system and

that the mathematical model has only independent white-noise
driving function'sf Notice that the specific expressions for
the transition matrix ¢, and the covariance matrix of the state

response due to the white-noilse 1nputs, H cannot be derived

n’
unless the differential equation relating ni(t) and fi(t) is
known for each 1 =1, 2, and 3. However, Hn ls always a
symmetrical matrix and ®, is a diagonal matrix for this
example since the nolses nl(t), ne(t), and n3(t) are mutually
independent.

Since the measurements of the "obsefvables”, ¥, and ¥y,
are made without error, the matrix V. 1s 1denﬁicaliy zero for
both the Kalman fllter of "System a'" and the Kalman filter of
"System b". |

The only matrices (of the ones that are known) which are
not the Same for the.two systems are the Mn matrix assoclated
with "System a" aud the M, matrix assoclated with "System b",

b

which are denoted Mi and Mn’ respectlively. From Figures 13 and

14 the expressions for ¥, and y, can be written as
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a a a 'a
22 32 12 22
Va = z, - + )2, + —p—— 2 (7.19
& Ao 1 1B2,3l 1Byl 72 Ay 5] 73 )
a a 8n A a
20 32 12 12
and y, = ( - )2, - —m— z + ——=S_z_ (7.20)
b 141, 2l A 51 71 By,2 2 Ay 3073 (

Since none of the quantitles 1lnvolved in the coefficients in

7.19 and 7.20 are zero at the sampling times, the identities

a a a A
2, %12 _ o218y 3 7 o1
Ao, 3l [Aq,2l  [Aq, 2l *18p, 5l (7.21)
@22 232 e ]
- = 2 7.22
Ay ol [B1,3l 8,0l 0 [Aq 5] ( )

may be used to reduce two of these coefficlents. .Then the 1

by 3 matrix Mi-can be written as

@no |
My = [Ay, 21" 1Bg, 5l [iag, 5l ~ 141, 3l 4,217
= [<m11)n (m12)n (ml3) 1 (7.23)

And, 1t is found that at time tn, Ty 1s Jjust a constant kn

times Vo where

_agp(ty) [Ay 5(t))]
S, (.20

Thus, the 1 by 3 matrix Mg can be wriltten as

'Mg = kn[(mll)n (m12)n : (ml3)n] <7.25)

Let the error-covariance matrix P for "System a" be

denoted by Pi and the error-covariance matrix Pn for "System

b b

b" be denoted by P). Then it is easy to show that Po = P,
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This may be done by observing from 7.10 and 7.12, together

b

with the relationship between Mﬁ and Mn’

a_pxb
that Pg —P; implies

b a b a b
Pi = P . Then, since o = ¢, and H = H, Equations 7.14
implies that p¥e_ = pxb Consequently, by assuming that

n+1 n+l°

P{a = P{b, which 18 the most loglcal cholce anyway, .it

follows that

= P~ = P, (7.26)

by mathematical induction. Thils result 1s what one would
.expect since the two measured quantities, Vs and V0 each
contain a linear combination of the noises with known,
nonzero coefficients; therefore, the Kalman fllter assoclated
with "System a" and the Kalman filter associated with "System
b" ought to make equally good estimates of the noises.

Since the "secondary observable" of "System a" is measured

without error, ea(tn) is given by

Qoo - a12n2)]
141, 2l

8polly = 8405

(-2e L )
1%, 2l

where the "best estimate" referred to is assumed to be the

—ea(tn) = [best estimate of (

(7.27)

bést estimate of the indicated sum that the Kalman filter
1s capable of giving, assuming y, as the "observable". But
1t can be shown that for the independent state variables

z4 and zz-of the Kalman filter equations, the best estimate
of the sum; (zl + 2,), 1s Just equal to the sum of the best

estimates; 1i.e.,
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(2 % zp) =8 + 2, | | (7.28)

This result is most easlly verified b& recognizing that for
the Kalman filter, £ = [(8;) (2,),17 is equal to the mean
of the conditional density function p(z,ly,).' Since z, and
z, are independent and Gausslan, this conditional density
function may be written as

p(zyly,) = p((z),)3,)p((25),15,) (7.29)
where the two conditional density functions on the right-hand

A

‘side are Gaussian with means of (’z\l)n and (zq)n? respectively.

[

One can then define a random variable w, = (zl)n~+ (z2)n,

and the mean of the conditiohal density function p(thyn) will

be (21)n + (ﬁg)n. Then, if a Kalman filter were used to
estimate W it would pick as 1lts best estimate ﬁh, the mean
of p(wann). Consequently,

B = [29(t,) ¥ 2,(t)] = 2 (t,) +2,(t) (7.30)

which 1s the desired result.

With the use of the above result, Equation 7.27 can be

written
1 2 - A
-e,(ty) = & o (app(2y - 29) - ayp (25 - 2p))
1,2
Squaring this and taking the mean yilelds _
P 1 2 ' - 2
ey (ty) = TRE (agopyy (£n) = 2ag5350P1o(t, )+ a7opon(ty))
1.2 (7.31)
1

See for example Brown (4), pp. 25. :
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Similarly, the mean-square error associated wlth "System
b" can be written as

1

o 2
2 (255099 (t)) - 2a15830p)5(t)) + a1,045(t )
1,3

| (7.32)
Notice that the result of Equation 7.26 has been employed to

2 =
eb(tn) -

write thg pij's of Equation 7.31 and the pij's of Equation 7.32
as elements of the same matrix, Pn, which can be calculated
from elther of the two systems,

The expression for Pn can be calculated in terms of the
elements of P* and M, (which will be denoted by p%? and my,,
respectively, in the remaining equations) with the aid of
Equations 7.10 and 7.12. Since PK is a symmetrical mafrix,

it can be shown that the elements of Pp are given by

3 3
°nPrq(tn) = T A my ymy 5 (poDET - PDEY) (7.33)
izk Jj=q
for k, ¢ =1, 2, 3, where
3 3 nl
°n T 7 JE MaMgPiy (7.34)

Substituting the values of P171sP10s and Poo into Equation 7.31

and collecting terms ylelds
2
2 , 2 812

= 2a
cnea(tn) = mll(m12 +

12M10 n_,n ny2
lA 2|2 IA I )(pj)flpgg - (p?fe) )
1, 1,2

2 2
asm : -
Zms s (p30ex] - (p35)% + 13- (pa0pxl - (053)2)

+m
2
JAl,QI



oU

a M., ~ -
2 12 13 n_,m __yn.n
+ 2myy (my oy o + —=—==) (p} P33 - P{opy3)

131, 2l
2

a. Alll
12 12712y, w0 _,n .0 .n
MRE + A l)(p13p22 pfop%3)
1,2 1,2

a

+ 2myymy 5

2m

2
m., L2 3
11713712 (p3D0%3 - py30A3) (7.35)

[A1, 2

Similarly, substituting the values of Pyq> p13, and p33 into

Equation 7.32 and collecting simllar terms yields
—_—  a% me
2 _ 32712 n_yn _ ny2
cpeplty) = 5(pf1pEs - (p3p)7)
Ay 5l
1,3
2 2 o 2
232fs_ |, St 10%32 ) (™D _ (p*)2)
T lg A |2 I lz 11M13/\P11P33 ~\Py3
1’3 1,3 1’3

2 2
a. ,m
+ 22225 (pHnptl - (p30)%)
|41, 5

2a 35y o
==
IA1,3|

2a

*I_ %N *N_ kN
(a)gmyy + agoth 3) (P7Pp3 - PyoPy3)

12a32m§2 ( *¥_xN %N *n)
Py3Pos = PyoPo3

A, 517

22, oMy o

TE (agomyy + a3om3) (p§3p35 - pi3p33)  (7.36)
1,3

where it 1s implled that the coefficients in both 7.35 and

7.36 are evaluated at tn' By simply utilizing Equations 7.21,
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7.22, and 7.23, where approprlate, i1t can be shown that

e2(t,) = eS(t ) (7.37)

Thus the two "intuitive" systems under consideration are
equally good for estimating sl(tn).

There are four more possible "intuitive" systems for this
example. Under similar assumptions about the sampling times,
it could be shown by an appropriate change of subscripts '
'that the mean-square error for each of these systems 1s the
same as the mean-square error for the two systems considered
above. Consequently, this example could be considered as a
general proof, for the given inputs, of the contention that
all the possible "intuitive" systems are equally good.

It 1s interesting to note that the proof for this
discrete system was accomplished by direct comparison of the
mean-square errors, rather than the indirect approach that
was used for continuous systems. Due to the matrix operations
involved, it appears as though the extension of the above
proof to the general n input line, m signal
case would be very difficult at best. Consequently, proving
the desired result first for coﬁtinudus systems, then
extending it to discrete systems appears to have been a

work saving route.
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VIII. SUMMARY

The goal of thils thesis was to show that, with suiltable
assumptions about the A matrix of the input, A(t)s(t) +
g(t), and an appropriate linear, algebralc operator, an
"{ntuitive" system having the general configuration shown
in Figure 5 would give an optimum estimate of sl(t). The
criterion chosen for the optimization was the minimum mean-
‘square error criterion, with the system allowed to operate on
only a finlte amount of past data and constralilned to be
linear, physically realizable, and distortionless. With the
linear, algebraic operator chosen as shown in Figure 9, the
"intuitive" system was shown to be an optimum system if the
determinants of Equation 5.4 did not go to zero for any
values of their aréuments which were of interest.

Although the linear, algebraic operator of Figure 9 1s
not completely general, 1t is sufficlently general to
demonstrate that the particular cholce of the linear,
algebraic operator 1s not important. Consequently, it seems
reasonable to ektend the above result ‘to the linear, algebrailc
operator of the general form shown in Figure 5. ‘Sufficient
condifions to insure that the "intultive" system is then
optimum would then appear to be that none of the input lings
are glven zero weight at any time due to the choilce of the
linear, algebraic operator and that the linear, algebrailc

operator 1s well defined at all values of time which are of
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1ﬁterest. With proper regard for these condltions, we get
the useful result that all the "intuitive" systems are
equélly géod.

An attempt was made to show that the "intultive"
system was an optlmum system for cases where one or the ofherA
of the determinants in 5.4 went to zero at a finite number of
1solated polnts, but problems were encountered about the
existence of a solutiqn to the set of integral equatilons
describing the generalized (n-m)-dimensional Wlener filter,

. .Under certain assumptions on the optimum weighting functions
and the nolses, the extension appeared to be valid, but the
demonstration of this result took the form of "forcing" the
"Intultive" solution to be optimum rather than showing the
solutlon existed on 1ts own merits. This 1s certalnly one
area in which more work could be done, providing the
"intuitive" solution 1is of sufficlent value for continuous
systems to merlt the extra work. |

As mentioned before, the results of this thesis are
interesting, but of limited practlical value for continuous
systems. Thls 1s because the set oflintegral equations which
describe the generallzed Wiener filter assoclated with the
"intuitive" system are just as difficult to solve és the
set which describe the "optimum" system.

The results should be extendable to discrete systems

which are analogous to the continuous systems above. One
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such discrete analog to the generalized, multidimensional
Wiener filter is the Kalman filter, and therefore, if only
discrete measurements of the inputs are to be used, if seems
reasonable to replace the generalized Wiener filter by the
Kalman fillter in the "intultive'" system of Figure 5.
Furthermore, for dilscrete systems, the sampling times can be
chosen so that the determinants involved 1n the linear, alge-
braic operator are nonzero. Consequently, no restrictions
neéd be made on the nolses except that they can be generated
by the use of shaping filters with white-noise inputs. The
practlical advantages of extending the above theory to discrete
problems are:

1. It provides a convenlent, optimum distortionless
filter for the discrete problem.

2. It insures that one need not concern himself with
trying to pick a "best" linear, algebralc operator. Simply
choose one (with proper regard for not weighting any of the
lines by zero); the theory insures that it will be as good as
any other,

The flrst statement above is not meant to preclude
the possibility of a direct derivation of an "optimum"
distortionless filter for the discrete problem similar to
what was done for continuous systems in Chapter III; it
simply means that such a dérivation is unnecessary. Of
course, it is possible that the direct "optimum" system woula

offer -computational advantages, and for this reason, such a
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derlvation 1is suégested‘as a tobic for further study.

It should be polnted out that 1t 1s really the distortion-
less requirement and the'nonadaptive assumption on the
"optimum" system which permit the "intultive" system to make
as good an estimate of sl(t) as the "optimum" system. The
second of these conditions limits the "optimum" system to
making 1ts estimate from the knowledge of the nolses; the'_
first forces 1t, in effect, to operate on (n-m) independent
linear combilnations of the nolses, even though these nolses
are orliginally unmlxed. |

Another interesting toplc for further study 1s suggested
by consldering the construction of an optimum, distortionless
filter for estimating the signal s(t) from the available
inputs shown in Figure 15(a), where s(t) =.Q§é§l_ The
signal s(t) 1s assumed to be differentiable everywhere, and
the two nolses are assumed to be mutually lndependent, non-

statlionary random functions, For the general linear system

shown in Figure 15(b), the output can be written
t
x(t) = g y1(t,u)ls(t-u) + ny(t-u)ldu

t .
+] vo(t,u) (EHER 4 0 (t-u) Jau | (8.1)

The distortlionless constraint requires that

g, (Ew)s (mwdan + [y (¢, u) S2lu) g £) = 0
£ yl ,u)s(t-u)du + [ Vo(tv) g u - s(t) =

0 (8.2)
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s(t) + nl(t)

3(t) + ny(t)

Pl

(a) The avallable inputs

s(t) + nl(t)

v, (t,u)

S(t) + n2(t5

¥o(t,u)

(b) The "optimum" distortionless filter

&+ n £1(t)

(¢) An "intultive" system

Flgure 15. A simple example wlth related slgnals
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Applying the usual calculus of varlations to minimlze the
mean-square error under the constraint 8,2 yilelds the
following two equations which, along with 8.2, define the
optimum weighting functions yl(t,v) and ye(t,v):

t .
2£ yl(t,v)wl(t-u,t—v)dv + as(t-u) =0

for O <cuct

t

2£ y2(t,v)m2(t—u,t—v)dv + 2 d

t-u
t-u) 0. (8-3)

Qult

2

These two equatlons can be reduced to one by differentiating
the first with respect to u and adding the resulting equation
to the second of Equations 8.3, This yields’

t £
(g yl(t,v)-g—ﬁ o1 (£-u,t-v)av + £y2(t,v)cp2(t-u,t-v)dv =0

(8.4)
An "intultive" system for estimating s(t) from the inputs
of Figure 15(a) 1s shown in Figure 15(c). If the system is
"turned on" at t = O with zero initial conditions, the output

of the integrator at time * 1s gilven by

t
fé(t) g [8(u) + no(u)]ldu

¢ .
s(t) - s(0) + g n2(u)du

= s(t) - 8(0) + np(t) | (8.5)
Assuming that s(0) 1s uncorrelated with both'nl(t) and né(t),
the integral equation which specifies the optimum value of

the weighting function y(t,v) can be written as
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t . . .
Y R s2(0) 1av

-y (t-u,t) =0 for 0 cu <t (8.6)

Substituting the approprlate expression for the autocorrela-
tion function of né into this expression yields

t ' t-u t-v o
£ y(t,v)[ml(t—u,t-v) + g g po(x,2)dzdx + s (0)jav

-y (E-u,t) = 0 for 0 <uc<t (8.7)

The over-all weighting function from input line 1 to the

output of the "intultive" system is given by
yl(t,v) = 6(V) - y(t,v) ' (8-8)

Letting fg(t) represent the second input, the output due to

the second 1lnput alone can be written as
t t-u .
5 y(t,u) g f£,(x)dx du
t t-x
= [ fe(x) £ y(t,u)dudx
o .

t v
g fe(t-v) £ y(t,u)du@v

From this 1t 1s observed that the equlvalent welghting

function from input line 2 to the output 1s gilven by
v o

ye(t:v) = g y(t,u)du (8-9)
To prove that the "intuitive" system 1s indeed an
optimum system, 1t is sufficient to show that the over-all

weighting functions of the "intuiltive" system are a legltimate



103

solution to Equations 8.2 and 8.4, Substitution of Equations
8.8 and 8.9 into 8.4 and integration of the Dirac delta

function term yields

t t v’
- g y(t,v) %ﬁ wl(t—u,t—v)dv + g [J y(t,x)éx]we(t—u,t—v)dv

9 _ _ ‘ ('
+ = 30 cpl(t u,t) =0 ’ | (8.10)

as one condition that y(t,v) must satisfy 1f the "intuitive'
.system is to be an optimum one, That y(t,v) does indeed
satisfy Equation 8.10 can be shown by taking the partial
derivative with respect to u of Equation 8.7. This ylelds

t
Jy(t’v)['g'ﬁ col(t"u:t-v) - (g mg(t"u,z)dz]dv

- &5 oy (t-u,t) = 0 (8.11)

Comparison of Equations 8,10 and 8.11 shows that they are

equlvalent 1f

t t-v t v
Fy(t,v) £ pp(t-u,z)dzdv = J [g y(t,x)dx g, (t-u, t-v)av
0 0 .

(8.12)
By replacing v by x and interchangling the order of integra-
tion, the left-hand side of 8.12 can be written as

t t-2
g £ y(t,x)wz(t—u,z)dxdz

Then, 1ett1ng ¥ =t - z, tils becomes
£ [g t X dx]¢2(t u, t-v)dv

which shows that 8.12 1s an identity. Consequently, 1t can
be concluded that the solution y(t,v) to Equation 8.7 will
satisfy Equation 8.10.
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By inspection of Figure 15(c), 1t is noted that if the
"intultive" system 1s to be distortionless, the weighting
function y(t,v) must glve zero welght to the constant s(0)
which appears in its input (i.e., in the frequency domain,
Y(t,w) must be zero at w = 0). This also turns out to be
the only requirement of y(t,v) that 1s necessary to satilsfy
the distortionless constraint, as can be demonstrated by
substituting 8.8 and 8.9 into Equation 8.2. Furthermore, it
1s observed that the solution y(t,v) to Equation 8.7 will
satisfy this requirement since Equation 8.7 ﬁust be true for
arbitrary values of s(0). Thus, the over-all weighting
functions of the "intultive" system represent a valid solution
to the integral equations specifying the "optimum" distortion-
less filter,

IThere are many possible generallzatlions of the above
example whilch appear to be worth lnvestigating. For example,
for the 2 inputs in Figure 15(a), one might try replacing
&(t) by L[s], where L is some general linear operator. Then
the integrator in Figure 15(c) would be replaced by the
appropriate inverse operator of L, denoted by L_l. It 1s
noted that the.deriQative operator 1ls an example of such a
linear operator, and happens to be one for which the 1nverée
operator 1s not single-valued. Defining the inverse

operator to be the definlte integral with limlts O to ¢

eliminated this problem but introduced the troublesome
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initial value s(0). The fact that, in the above example,
the "intultive" system was an optimum distortionless system
in splte of this difficulty is encouraging. Consequently,
one would expect a simllar result fer the situation whére
s(t) is replaced by L[s], at least for the "well-behaved"

1 and L'lL

operators for which the operational products LL™
are the same. Note that the derivative operator and 1ts
inverse do not satisfy this requirement, so by this criterion
are not "well-behaved".

The next obvlious step 1s to try to extend the above
generalization to the multiple-input problem; that 1s,
investigate the "intuitive" system for the case where the
inputs are of the form shown in Figure 3 with each algebrailc

coefficlent aij(t) replaced by a linear operatcr Lij operating
on the signal sJ(t).
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